高二數學教案【實用】
作為一名為他人授業解惑的教育工作者,總不可避免地需要編寫教案,借助教案可以有效提升自己的教學能力。教案要怎么寫呢?下面是小編整理的高二數學教案,僅供參考,希望能夠幫助到大家。
高二數學教案1
教學準備
教學目標
熟練掌握三角函數式的求值
教學重難點
熟練掌握三角函數式的求值
教學過程
【知識點精講】
三角函數式的求值的關鍵是熟練掌握公式及應用,掌握公式的逆用和變形
三角函數式的求值的類型一般可分為:
(1)“給角求值”:給出非特殊角求式子的值。仔細觀察非特殊角的特點,找出和特殊角之間的關系,利用公式轉化或消除非特殊角
(2)“給值求值”:給出一些角得三角函數式的值,求另外一些角得三角函數式的值。找出已知角與所求角之間的某種關系求解
(3)“給值求角”:轉化為給值求值,由所得函數值結合角的范圍求出角。
(4)“給式求值”:給出一些較復雜的三角式的值,求其他式子的值。將已知式或所求式進行化簡,再求之
三角函數式常用化簡方法:切割化弦、高次化低次
注意點:靈活角的變形和公式的變形
重視角的范圍對三角函數值的影響,對角的范圍要討論
【例題選講】
課堂小結】
三角函數式的求值的關鍵是熟練掌握公式及應用,掌握公式的逆用和變形
三角函數式的求值的'類型一般可分為:
(1)“給角求值”:給出非特殊角求式子的值。仔細觀察非特殊角的特點,找出和特殊角之間的關系,利用公式轉化或消除非特殊角
(2)“給值求值”:給出一些角得三角函數式的值,求另外一些角得三角函數式的值。找出已知角與所求角之間的某種關系求解
(3)“給值求角”:轉化為給值求值,由所得函數值結合角的范圍求出角。
(4)“給式求值”:給出一些較復雜的三角式的值,求其他式子的值。將已知式或所求式進行化簡,再求之
三角函數式常用化簡方法:切割化弦、高次化低次
注意點:靈活角的變形和公式的變形
重視角的范圍對三角函數值的影響,對角的范圍要討論
高二數學教案2
教學內容
教科書125頁,練習三十.
一、素質教育目標
(一)知識教學點
1.通過整理和復習,進一步掌握方程的有關知識。
2.通過整理和復習,進一步掌握用方程解應用題。
(二)能力訓練點
1.通過整理和復習,加強知識間的聯系,形成知識網絡。
2.通過整理和復習,培養學生計算的敏捷性和靈活性。
(三)德育滲透點
通過知識化間的聯系,使學生受到辯證唯物主義的啟蒙教育。
(四)美育滲透點
通過整理和復習,使學生感受到數學知識內在聯系的邏輯之美,從而感悟到數學知識的魅力。
二、學法指導
1.引導學生回憶所學過知識,使知識系統化。
2.指導學生利用已有經驗,進行體驗,鞏固所學知識。
三、教學重點
通過知識間的聯系,掌握方程的概念和解方程的能力。
四、教學難點
知識間的內在聯系。
五、教具學具準備
投影儀、投影片等。
六、教學步驟
(一)導入(略)
(二)復習
1.這單元學習了什么內容
2.回憶并概括,板書
(1)用字母表示數
(2)解簡易方程
(3)列方程解應用題。
(先啟發學生回憶學過的知識,為整理和復習做準備)。
(三)整理
1.用字母表示數
用字母表示數每天跑步的米數用X表示。
用字母表示數量關系一星期跑的米數7X。
用含有字母的式子表示數量現在每天跑步的米數x+2凹
(2)出示1(2),引導學生解答。
(把用字母表示數,按整理和復習的類型進行梳理,形成知識結構。)
2.解簡易方程
(1)方程的意義,引導學生回憶。
解方程的意義
出示練習三十二1題,進行反饋練習。
(2)整理和復習3題
、倏谑鼋忸}步驟
、谑箤W生明確:根據加、減、乘、除運算關系進解答,這在以前解含有未知數尤的等式中已經掌握。
、鄢鍪揪毩暼3、4題,部分題分組進行解答,訂正,并說一說是怎樣想的`
(邊整理邊反饋練習,使學生已有的經驗得到充分體驗和發展,提高學生的計算能力。)
、芤龑W生總結,解方程應注意的問題。
3.列方程解應用題
列方程解應用題,用方程的方法解決實際問題。
(1)列方程解應用題的特點是
、儆米帜副硎疚粗獢
、诜治鲱}中的等量關系
、哿谐龊形粗獢祒的等式方程
、芙獯,檢驗與答答話。
(2)整理和復習4題
分組進行交流,訂正時說一說是怎樣想的
(3)練習三十三4題,用方程解,獨立計算。
(4)整理和復習5題
、傧确纸M用不同方法解答
、谝龑W生進行比較
使學生明確:
用方程解應用題:用算術方法解應用題
1.未知數用字母表示,勃口列式。
1.未知數不參加列式。
2。根據題意找出數量間的相等
2.根據題里已知數和未知數間關系,引出含有未知數x的關系,引出含有末知數x的等式。的關系,確定解答步驟,再列式計算。
注意:用方程解應用題,得數不注明單位名稱;而用算術方法解應用題,得數要注明單位名稱。
今后題目中除指定解題方法以外,自己選擇解題方法。
(5)練習三十三6題
訂正時,引導學生分析、比較。
七、布置作業
練習三十三3、4題部分題,7、8題。
八、板書設計(略)
高二數學教案3
一、教學目的
1、使學生進一步理解自變量的取值范圍和函數值的意義。
2、使學生會用描點法畫出簡單函數的圖象。
二、教學重點、難點
重點:
1、理解與認識函數圖象的意義。
2、培養學生的看圖、識圖能力。
難點:在畫圖的三個步驟的'列表中,如何恰當地選取自變量與函數的對應值問題。
三、教學過程
復習提問
1、函數有哪三種表示法?(答:解析法、列表法、圖象法。)
2、結合函數y=x的圖象,說明什么是函數的圖象?
3、說出下列各點所在象限或坐標軸:
新課
1、畫函數圖象的方法是描點法。其步驟:
。1)列表。要注意適當選取自變量與函數的對應值。什么叫“適當”?這就要求能選取表現函數圖象特征的幾個關鍵點。比如畫函數y=3x的圖象,其關鍵點是原點(0,0),只要再選取另一個點如M(3,9)就可以了。
一般地,我們把自變量與函數的對應值分別作為點的橫坐標和縱坐標,這就要把自變量與函數的對應值列出表來。
。2)描點。我們把表中給出的有序實數對,看作點的坐標,在直角坐標系中描出相應的點。
。3)用光滑曲線連線。根據函數解析式比如y=3x,我們把所描的兩個點(0,0),(3,9)連成直線。
一般地,根據函數解析式,我們列表、描點是有限的幾個,只需在平面直角坐標系中,把這有限的幾個點連成表示函數的曲線(或直線)。
2、講解畫函數圖象的三個步驟和例。畫出函數y=x+0。5的圖象。
小結
本節課的重點是讓學生根據函數解析式畫函數圖象的三個步驟,自己動手畫圖。
練習
、龠x用課本練習
。ㄇ耙还澮炎鳎毫斜、描點,本節要求連線)
、谘a充題:畫出函數y=5x-2的圖象。
作業:選用課本習題。
四、教學注意問題
1、注意滲透數形結合思想。通過研究函數的圖象,對圖象所表示的一個變量隨另一個變量的變化而變化就更有形象而直觀的認識。把函數的解析式、列表、圖象三者結合起來,更有利于認識函數的本質特征。
2、注意充分調動學生自己動手畫圖的積極性。
3、認識到由于計算器和計算機的普及化,代替了手工繪圖功能。故在教學中要傾向培養學生看圖、識圖的能力。
高二數學教案4
一、教材分析
【教材地位及作用】
基本不等式又稱為均值不等式,選自北京師范大學出版社普通高中課程標準實驗教科書數學必修5第3章第3節內容。教學對象為高二學生,本節課為第一課時,重在研究基本不等式的證明及幾何意義。本節課是在系統的學習了不等關系和掌握了不等式性質的基礎上展開的,作為重要的基本不等式之一,為后續進一步了解不等式的性質及運用,研究最值問題奠定基礎。因此基本不等式在知識體系中起了承上啟下的作用,同時在生活及生產實際中有著廣泛的應用,它也是對學生進行情感價值觀教育的好素材,所以基本不等式應重點研究。
【教學目標】
依據《新課程標準》對《不等式》學段的目標要求和學生的實際情況,特確定如下目標:
知識與技能目標:理解掌握基本不等式,理解算數平均數與幾何平均數的概念,學會構造條件使用基本不等式;
過程與方法目標:通過探究基本不等式,使學生體會知識的形成過程,培養分析、解決問題的能力;
情感與態度目標:通過問題情境的設置,使學生認識到數學是從實際中來,培養學生用數學的眼光看世界,通過數學思維認知世界,從而培養學生善于思考、勤于動手的良好品質。
【教學重難點】
重點:理解掌握基本不等式,能借助幾何圖形說明基本不等式的意義。
難點:利用基本不等式推導不等式.
關鍵是對基本不等式的理解掌握.
二、教法分析
本節課采用觀察——感知——抽象——歸納——探究;啟發誘導、講練結合的教學方法,以學生為主體,以基本不等式為主線,從實際問題出發,放手讓學生探究思索。利用多媒體輔助教學,直觀地反映了教學內容,使學生思維活動得以充分展開,從而優化了教學過程,大大提高了課堂教學效率.
三、學法指導
新課改的精神在于以學生的發展為本,把學習的主動權還給學生,倡導積極主動,勇于探索的學習方法,因此,本課主要采取以自主探索與合作交流的學習方式,通過讓學生想一想,做一做,用一用,建構起自己的知識,使學生成為學習的主人。
四、教學過程
教學過程設計以問題為中心,以探究解決問題的方法為主線展開。這種安排強調過程,符合學生的認知規律,使數學教學過程成為學生對知識的再創造、再發現的過程,從而培養學生的創新意識。
具體過程安排如下:
(一)基本不等式的教學設計創設情景,提出問題
設計意圖:數學教育必須基于學生的“數學現實”,現實情境問題是數學教學的平臺,數學教師的任務之一就是幫助學生構造數學現實,并在此基礎上發展他們的數學現實.基于此,設置如下情境:
上圖是在北京召開的第24屆國際數學家大會的會標,會標是根據中國古代數學家趙爽的弦圖設計的,顏色的明暗使它看上去像一個風車,代表中國人民熱情好客。
[問題1]請觀察會標圖形,圖中有哪些特殊的幾何圖形?它們在面積上有哪些相等關系和不等關系?(讓學生分組討論)
(二)探究問題,抽象歸納
基本不等式的教學設計1.探究圖形中的不等關系
形的角度----(利用多媒體展示會標圖形的變化,引導學生發現四個直角三角形的面積之和小于或等于正方形的面積.)
數的角度
[問題2]若設直角三角形的兩直角邊分別為a、b,應怎樣表示這種不等關系?
學生討論結果:。
[問題3]大家看,這個圖形里還真有點奧妙。我們從圖中找到了一個不等式。這里a、b的取值有沒有什么限制條件?不等式中的等號什么時候成立呢?(師生共同探索)
咱們再看一看圖形的變化,(教師演示)
(學生發現)當a=b四個直角三角形都變成了等腰直角三角形,他們的面積和恰好等于正方形的面積,即.探索結論:我們得到不等式,當且僅當時等號成立。
設計意圖:本背景意圖在于利用圖中相關面積間存在的數量關系,抽象出不等式基本不等式的教學設計。在此基礎上,引導學生認識基本不等式。
2.抽象歸納:
一般地,對于任意實數a,b,有,當且僅當a=b時,等號成立。
[問題4]你能給出它的證明嗎?
學生在黑板上板書。
[問題5]特別地,當時,在不等式中,以、分別代替a、b,得到什么?
學生歸納得出。
設計意圖:類比是學習數學的一種重要方法,此環節不僅讓學生理解了基本不等式的`來源,突破了重點和難點,而且感受了其中的函數思想,為今后學習奠定基礎.
【歸納總結】
如果a,b都是非負數,那么,當且僅當a=b時,等號成立。
我們稱此不等式為基本不等式。其中稱為a,b的算術平均數,稱為a,b的幾何平均數。
3.探究基本不等式證明方法:
[問題6]如何證明基本不等式?
設計意圖:在于引領學生從感性認識基本不等式到理性證明,實現從感性認識到理性認識的升華,前面是從幾何圖形中的面積關系獲得不等式的,下面用代數的思想,利用不等式的性質直接推導這個不等式。
方法一:作差比較或由基本不等式的教學設計展開證明。
方法二:分析法
要證
只要證2
要證,只要證2
要證,只要證
顯然,是成立的。當且僅當a=b時,中的等號成立。
4.理解升華
1)文字語言敘述:
兩個正數的算術平均數不小于它們的幾何平均數。
2)符號語言敘述:
若,則有,當且僅當a=b時,。
[問題7]怎樣理解“當且僅當”?(學生小組討論,交流看法,師生總結)
“當且僅當a=b時,等號成立”的含義是:
當a=b時,取等號,即;
僅當a=b時,取等號,即。
3)探究基本不等式的幾何意義:
基本不等式的教學設計借助初中階段學生熟知的幾何圖形,引導學生探究不等式的幾何解釋,通過數形結合,賦予不等式幾何直觀。進一步領悟不等式中等號成立的條件。
如圖:AB是圓的直徑,點C是AB上一點,
CD⊥AB,AC=a,CB=b,
[問題8]你能利用這個圖形得出基本不等式的幾何解釋嗎?
(教師演示,學生直觀感覺)
易證RtACDRtDCB,那么CD2=CA·CB
即CD=.
這個圓的半徑為,顯然,它大于或等于CD,即,其中當且僅當點C與圓心重合,即a=b時,等號成立.
因此:基本不等式幾何意義可認為是:在同一半圓中,半徑不小于半弦(直徑是最長的弦);或者認為是,直角三角形斜邊的一半不小于斜邊上的高.
4)聯想數列的知識理解基本不等式
從形的角度來看,基本不等式具有特定的幾何意義;從數的角度來看,基本不等式揭示了“和”與“積”這兩種結構間的不等關系.
[問題9]回憶一下你所學的知識中,有哪些地方出現過“和”與“積”的結構?
歸納得出:
均值不等式的代數解釋為:兩個正數的等差中項不小它們的等比中項.
基本不等式的教學設計(四)體會新知,遷移應用
例1:(1)設均為正數,證明不等式:基本不等式的教學設計
(2)如圖:AB是圓的直徑,點C是AB上一點,設AC=a,CB=b,
,過作交于,你能利用這個圖形得出這個不等式的一種幾何解釋嗎?
設計意圖:以上例題是根據基本不等式的使用條件中的難點和關鍵處設置的,目的是利用學生原有的平面幾何知識,進一步領悟到不等式成立的條件,及當且僅當時,等號成立。這里完全放手讓學生自主探究,老師指導,師生歸納總結。
(五)演練反饋,鞏固深化
公式應用之一:
1.試判斷與與2的大小關系?
問題:如果將條件“x>0”去掉,上述結論是否仍然成立?
2.試判斷與7的大小關系?
公式應用之二:
設計意圖:新穎有趣、簡單易懂、貼近生活的問題,不僅極大地增強學生的興趣,拓寬學生的視野,更重要的是調動學生探究鉆研的興趣,引導學生加強對生活的關注,讓學生體會:數學就在我們身邊的生活中
(1)用一個兩臂長短有差異的天平稱一樣物品,有人說只要左右各秤一次,將兩次所稱重量相加后除以2就可以了.你覺得這種做法比實際重量輕了還是重了?
(2)甲、乙兩商場對單價相同的同類產品進行促銷.甲商場采取的促銷方式是在原價p折的基礎上再打q折;乙商場的促銷方式則是兩次都打折.對顧客而言,哪種打折方式更合算?(0≠q)
(五)反思總結,整合新知:
通過本節課的學習你有什么收獲?取得了哪些經驗教訓?還有哪些問題需要請教?
設計意圖:通過反思、歸納,培養概括能力;幫助學生總結經驗教訓,鞏固知識技能,提高認知水平.從各種角度對均值不等式進行總結,目的是為了讓學生掌握本節課的重點,突破難點
老師根據情況完善如下:
知識要點:
(1)重要不等式和基本不等式的條件及結構特征
(2)基本不等式在幾何、代數及實際應用三方面的意義
思想方法技巧:
(1)數形結合思想、“整體與局部”
(2)歸納與類比思想
(3)換元法、比較法、分析法
(七)布置作業,更上一層
1.閱讀作業:預習基本不等式的教學設計
2.書面作業:已知a,b為正數,證明不等式基本不等式的教學設計
3.思考題:類比基本不等式,當a,b,c均為正數,猜想會有怎樣的不等式?
設計意圖:作業分為三種形式,體現作業的鞏固性和發展性原則,同時考慮學生的差異性。閱讀作業是后續課堂的鋪墊,而思考題不做統一要求,供學有余力的學生課后研究。
五、評價分析
1.在建立新知的過程中,教師力求引導、啟發,讓學生逐步應用所學的知識來分析問題、解決問題,以形成比較系統和完整的知識結構。每個問題在設計時,充分考慮了學生的具體情況,力爭提問準確到位,便于學生思考和回答。使思考和提問持續在學生的最近發展區內,學生的思考有價值,對知識的理解和掌握在不斷的思考和討論中完善和加深。
2.本節的教學中要求學生對基本不等式在數與形兩個方面都有比較充分的認識,特別強調數與形的統一,教學過程從形得到數,又從數回到形,意圖使學生在比較中對基本不等式得以深刻理解!皵敌谓Y合”作為一種重要的數學思想方法,不是教師提一提學生就能夠掌握并且會用的,只有學生通過實踐,意識到它的好處之后,學生才會在解決問題時去嘗試使用,只有通過不斷的使用才能促進學生對這種思想方法的再理解,從而達到掌握它的目的。
高二數學教案5
一、教學目標
【知識與技能】
能正確概述“二面角”、“二面角的平面角”的概念,會做二面角的平面角。
【過程與方法】
利用類比的方法推理二面角的有關概念,提升知識遷移的能力。
【情感態度與價值觀】
營造和諧、輕松的學習氛圍,通過學生之間,師生之間的交流、合作和評價達成共識、共享、共進,實現教學相長和共同發展。
二、教學重、難點
【重點】
“二面角”和“二面角的平面角”的概念。
【難點】
“二面角的平面角”概念的形成過程。
三、教學過程
(一)創設情境,導入新課
請學生觀察生活中的一些模型,多媒體展示以下一系列動畫如:
1.打開書本的過程;
2.發射人造地球衛星,要根據需要使衛星的軌道平面與地球的赤道平面成一定的角度;
3.修筑水壩時,為了使水壩堅固耐久,須使水壩坡面與水平面成適當的角度;
引導學生說出書本的兩個面、水壩面與底面,衛星軌道面與地球赤道面均是呈一定的角度關系,引出課題。
(二)師生互動,探索新知
學生閱讀教材,同桌互相討論,教師引導學生對比平面角得出二面角的概念
平面角:平面角是從平面內一點出發的兩條射線(半直線)所組成的圖形。
二面角定義:從一條直線出發的兩個半面所組成的圖形,叫作二面角。這條直線叫作二面角的棱,這兩個半平面叫作二面角的`面。(動畫演示)
(2)二面角的表示
(3)二面角的畫法
(PPT演示)
教師提問:一般地說,量角器只能測量“平面角”(指兩條相交直線所成的角.相應地,我們把異面直線所成的角,直線與平面所成的角和二面角,均稱為空間角)那么,如何去度量二面角的大小呢?我們以往是如何度量某些角的?教師引導學生將空間角化為平面角.
教師總結:
(1)二面角的平面角的定義
定義:以二面角的棱上任意一點為端點,在兩個面內分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角.
“二面角的平面角”的定義三個主要特征:點在棱上、線在面內、與棱垂直(動畫演示)
大。憾娼堑拇笮】梢杂盟钠矫娼堑拇笮肀硎。
平面角是直角的二面角叫做直二面角。
(2)二面角的平面角的作法
、冱cP在棱上—定義法
、邳cP在一個半平面上—三垂線定理法
、埸cP在二面角內—垂面法
(三)生生互動,鞏固提高
(四)生生互動,鞏固提高
1.判斷下列命題的真假:
(1)兩個相交平面組成的圖形叫做二面角。( )
(2)角的兩邊分別在二面角的兩個面內,則這個角是二面角的平面角。( )
(3)二面角的平面角所在平面垂直于二面角的棱。( )
2.作出一下面PAC和面ABC的平面角。
(五)課堂小結,布置作業
小結:通過本節課的學習,你學到了什么?
作業:以正方體為模型請找出一個所成角度為四十五度的二面角,并證明。
高二數學教案6
一、學習者特征分析
本節課內容是面向高二下學期的學生,主要是進行思維的訓練。學生在高一的時候已經學過這些數學思維方法,但是對這些知識還沒有進行概念化的歸納和專門的訓練。學生不知道分析法和綜合法的時候還是會用一點,以以往的經驗,學生一旦學習概念后,反而覺得難度大,概念混淆,因此,這一教學內容的設計是針對學生的這一情況,設計專題學習網站,通過學生之間經過學習,交流,課后反復思考的,進一步深化概念的過程,培養學生的數學思維能力。
二、教學目標
知識與技能
1、體會數學思維中的分析法和綜合法;
2、會用分析法和綜合法去解決問題。
過程與方法
1、通過對分析法綜合法的學習,培養學生的數學思維能力;
2、培養學生的數學閱讀和理解能力;
3、培養學生的評價和反思能力。
情感態度與價值觀
1.交流、分享運用數學思維解決問題的喜悅;
2.提高學生學習數學的興趣;
3.增強學習數學的信心。
三、教學內容
本節課是數學思維訓練專題課,專門訓練學生利用分析法和綜合法解題。分析法在數學中特指從結果(結論)出發追溯其產生原因的思維方法,即執果索因法。綜合思維方法:綜合是以已知性質和分析為基礎的,從已知出發逐步推求位未知的思考方法,即執果導因法。這兩種數學思維方法是數學思維方法中最基礎也是最重要的方法,是學生的思維訓練的重要內容。
四、教學策略的設計
1、情境的設計
情境描述
情境簡要描述
呈現方式
趣味問題
從前有個國王在處死那些犯了罪的臣子的時候,總是出一些這樣那樣的智力題給犯人做,用這種方法給那些更聰明的人一條生路,有一位正直的青年叫亞瑟,不幸得罪了國王,國王判他死罪,他所面臨的問題是:“這里有三個盒子,金盒,銀盒和鉛盒,免死金牌放在其中一個盒子內,每只盒子各寫一句話,但其中只有一句是真的,你要是猜中了免死金牌在哪個盒子里,就免你一死罪!甭斆鞯膩喩涍^推理而獲知免死金牌所放的盒子,從而救了自己的命,請問亞瑟是如何推理的?
網頁
2、教學資源的設計
資源類型
資源內容簡要描述
資源來源
相關故事
通過有趣的推理故事,如“推理救命的故事”,“寶藏的`故事,用于激發學生的學習興趣。
網上下載
學習網站
專題學習網站,嵌入了經過修改適用于本課的論壇,在線測試等。
自行制作
3、教學工具:計算機
4、教學策略:自主探究學習策略,任務驅動策略、反思策略
5、教學環境:網絡教室
五、教學流程設計
1、創設情景,吸引學生注意
教師活動
學生活動
資源/工具
設計思想
提出“推理救命問題”
積極思考,尋找方法
學習網站
以具有趣味性的故事入手,吸引學生的注意,點明本節課的目的。
2、自主探究,獲取知識
教師活動
學生活動
資源/工具
設計思想
1、初試牛刀:讓學生試做思維訓練題。
2、挑戰高考題:在高考題中充分體現分析法,綜合法。
3、舉一反三:讓學生學會總結
學以致用:
4、把本節的方法應用到解決數學問題中。
積極思考,互相交流,發現問題,解決問題。
學習網站
1、讓學生在輕松活潑的氛圍下帶著問題,自主、積極地學習,有助于培養學生的自我探索的能力。
2、超級鏈接控制性好,交互性強,可讓學生在較短的時間內收集積累更多的信息,拓寬學生的知識面。
3、培養學生收集信息、處理信息的能力。
3、總結概念,深化概念
教師活動
學生活動
資源/工具
設計思想
歸納本節的方法:分析法和綜合法。并指出:數學思維的訓練不單只是一節簡單的專題課,我們的同學在平常多留心身邊事物,多思考問題,不斷提高數學思維能力。
體會分析法和綜合法的概念,并在論壇上發表自己對概念的理解。
學習網站論壇
通過對具體問題的概念化,加深對概念的理解。
4、自主交流,知識遷移
教師活動
學生活動
資源/工具
設計思想
提出寶藏問題并指導學生利用BBs論壇進行討論
學生在論壇里充分地發表自己的看法
學習網站論壇
通過自主交流,增強分析問題的能力和解決問題的能力
5、在線測試,評價及反饋
教師活動
學生活動
資源/工具
設計思想
利用學習網站制作一些簡單的訓練題目
獨立完成在線的測試
學習網站
及時反饋課堂學習效果。
6、課后任務
教師活動
學生活動
資源/工具
設計思想
布置課后任務:在網絡上收集推理分析的相關例子,在學習網站的論壇上討論。
記錄要求,并在課后完成。
網絡資源和學習網站
通過課后的任務訓練,進一步提高學生的數學思維能力,把思維訓練延續到課堂外。
高二數學教案7
一、教學目標設計
1. 了解利用科學計算免費軟件--Scilab軟件編寫程序來實現算法的基本過程.
2. 了解并掌握Scilab中的基本語句,如賦值語句、輸入輸出語句、條件語句、循環語句;能在Scipad窗口中編輯完整的程序,并運行程序.
3. 通過上機操作和調試,體驗從算法設計到實施的過程.
二、教學重點及難點
重點: 體會算法的.實現過程,能認識到一個算法可以用很多的語言來實現,Scilab只是其中之一.
難點:體會編程是一個細致嚴謹的過程,體會正確完成一個算法并實施所要經歷的過程.
三、教學流程設計
四、教學過程設計
(一)幾個基本語句和結構
1、賦值語句(=)
2、輸入語句 輸入變量名=input(提示語)
3、輸出語句 print() disp()
4、條件語句
5、循環語句
(二)幾個程序設計
建議:直接在Scilab窗口下編寫完整的程序,保存后再運行;如果不能運行或出現邏輯錯誤
可打開程序后直接修改,修改后再保存運行,反復調試,直到測試成功.
高二數學教案8
平面向量共線的坐標表示
前提條件a=(x1,y1),b=(x2,y2),其中b≠0
結論當且僅當x1y2-x2y1=0時,向量a、b(b≠0)共線
[點睛](1)平面向量共線的坐標表示還可以寫成x1x2=y1y2(x2≠0,y2≠0),即兩個不平行于坐標軸的共線向量的對應坐標成比例;
(2)當a≠0,b=0時,a∥b,此時x1y2-x2y1=0也成立,即對任意向量a,b都有:x1y2-x2y1=0?a∥b.
[小試身手]
1.判斷下列命題是否正確.(正確的打“√”,錯誤的打“×”)
(1)已知a=(x1,y1),b=(x2,y2),若a∥b,則必有x1y2=x2y1.()
(2)向量(2,3)與向量(-4,-6)反向.()
答案:(1)√(2)√
2.若向量a=(1,2),b=(2,3),則與a+b共線的`向量可以是()
A.(2,1)B.(-1,2)C.(6,10)D.(-6,10)
答案:C
3.已知a=(1,2),b=(x,4),若a∥b,則x等于()
A.-12B.12C.-2D.2
答案:D
4.已知向量a=(-2,3),b∥a,向量b的起點為A(1,2),終點B在x軸上,則點B的坐標為________.
答案:73,0
向量共線的判定
[典例](1)已知向量a=(1,2),b=(λ,1),若(a+2b)∥(2a-2b),則λ的值等于()
A.12B.13C.1D.2
(2)已知A(2,1),B(0,4),C(1,3),D(5,-3).判斷與是否共線?如果共線,它們的方向相同還是相反?
[解析](1)法一:a+2b=(1,2)+2(λ,1)=(1+2λ,4),2a-2b=2(1,2)-2(λ,1)=(2-2λ,2),由(a+2b)∥(2a-2b)可得2(1+2λ)-4(2-2λ)=0,解得λ=12.
法二:假設a,b不共線,則由(a+2b)∥(2a-2b)可得a+2b=μ(2a-2b),從而1=2μ,2=-2μ,方程組顯然無解,即a+2b與2a-2b不共線,這與(a+2b)∥(2a-2b)矛盾,從而假設不成立,故應有a,b共線,所以1λ=21,即λ=12.
[答案]A
(2)[解]=(0,4)-(2,1)=(-2,3),=(5,-3)-(1,3)=(4,-6),
∵(-2)×(-6)-3×4=0,∴,共線.
又=-2,∴,方向相反.
綜上,與共線且方向相反.
向量共線的判定方法
(1)利用向量共線定理,由a=λb(b≠0)推出a∥b.
(2)利用向量共線的坐標表達式x1y2-x2y1=0直接求解.
[活學活用]
已知a=(1,2),b=(-3,2),當k為何值時,ka+b與a-3b平行,平行時它們的方向相同還是相反?
解:ka+b=k(1,2)+(-3,2)=(k-3,2k+2),
a-3b=(1,2)-3(-3,2)=(10,-4),
若ka+b與a-3b平行,則-4(k-3)-10(2k+2)=0,
解得k=-13,此時ka+b=-13a+b=-13(a-3b),故ka+b與a-3b反向.
∴k=-13時,ka+b與a-3b平行且方向相反.
三點共線問題
[典例](1)已知=(3,4),=(7,12),=(9,16),求證:A,B,C三點共線;
(2)設向量=(k,12),=(4,5),=(10,k),當k為何值時,A,B,C三點
共線?
[解](1)證明:∵=-=(4,8),
=-=(6,12),
∴=32,即與共線.
又∵與有公共點A,∴A,B,C三點共線.
(2)若A,B,C三點共線,則,共線,
∵=-=(4-k,-7),
=-=(10-k,k-12),
∴(4-k)(k-12)+7(10-k)=0.
解得k=-2或k=11.
有關三點共線問題的解題策略
(1)要判斷A,B,C三點是否共線,一般是看與,或與,或與是否共線,若共線,則A,B,C三點共線;
(2)使用A,B,C三點共線這一條件建立方程求參數時,利用=λ,或=λ,或=λ都是可以的,但原則上要少用含未知數的表達式.
高二數學教案9
教學目標
1.掌握橢圓的定義,掌握橢圓標準方程的兩種形式及其推導過程;
2.能根據條件確定橢圓的標準方程,掌握運用待定系數法求橢圓的標準方程;
3.通過對橢圓概念的引入教學,培養學生的觀察能力和探索能力;
4.通過橢圓的標準方程的推導,使學生進一步掌握求曲線方程的一般方法,并滲透數形結合和等價轉化的思想方法,提高運用坐標法解決幾何問題的能力;
5.通過讓中國學習聯盟膽探索橢圓的定義和標準方程,激發學生學習數學的積極性,培養學生的學習興趣和創新意識.
教學建議
教材分析
1. 知識結構
2.重點難點分析
重點是橢圓的定義及橢圓標準方程的兩種形式.難點是橢圓標準方程的建立和推導.關鍵是掌握建立坐標系與根式化簡的方法.
橢圓及其標準方程這一節教材整體來看是兩大塊內容:一是橢圓的定義;二是橢圓的標準方程.橢圓是圓錐曲線這一章所要研究的三種圓錐曲線中首先遇到的,所以教材把對橢圓的研究放在了重點,在雙曲線和拋物線的教學中鞏固和應用.先講橢圓也與第七章的圓的方程銜接自然.學好橢圓對于學生學好圓錐曲線是非常重要的.
。1)對于橢圓的定義的理解,要抓住橢圓上的點所要滿足的條件,即橢圓上點的幾何性質,可以對比圓的定義來理解.
另外要注意到定義中對“常數”的限定即常數要大于 .這樣規定是為了避免出現兩種特殊情況,即:“當常數等于 時軌跡是一條線段;當常數小于 時無軌跡”.這樣有利于集中精力進一步研究橢圓的標準方程和幾何性質.但講解橢圓的定義時注意不要忽略這兩種特殊情況,以保證對橢圓定義的準確性.
。2)根據橢圓的定義求標準方程,應注意下面幾點:
、偾的方程依賴于坐標系,建立適當的坐標系,是求曲線方程首先應該注意的地方.應讓學生觀察橢圓的圖形或根據橢圓的定義進行推理,發現橢圓有兩條互相垂直的對稱軸,以這兩條對稱軸作為坐標系的兩軸,不但可以使方程的推導過程變得簡單,而且也可以使最終得出的方程形式整齊和簡潔.
、谠O橢圓的焦距為 ,橢圓上任一點到兩個焦點的距離為 ,令 ,這些措施,都是為了簡化推導過程和最后得到的方程形式整齊、簡潔,要讓學生認真領會.
、墼诜匠痰耐茖н^程中遇到了無理方程的化簡,這既是我們今后在求軌跡方程時經常遇到的問題,又是學生的難點.要注意說明這類方程的化簡方法:①方程中只有一個根式時,需將它單獨留在方程的一側,把其他項移至另一側;②方程中有兩個根式時,需將它們分別放在方程的兩側,并使其中一側只有一項.
、芙炭茣蠈E圓標準方程的推導,實際上只給出了“橢圓上點的坐標都適合方程 “而沒有證明,”方程 的解為坐標的點都在橢圓上”.這實際上是方程的同解變形問題,難度較大,對同學們不作要求.
。3)兩種標準方程的橢圓異同點
中心在原點、焦點分別在 軸上, 軸上的橢圓標準方程分別為: , .它們的相同點是:形狀相同、大小相同,都有 , .不同點是:兩種橢圓相對于坐標系的位置不同,它們的焦點坐標也不同.
橢圓的焦點在 軸上 標準方程中 項的分母較大;
橢圓的焦點在 軸上 標準方程中 項的分母較大.
另外,形如 中,只要 , , 同號,就是橢圓方程,它可以化為 .
。4)教科書上通過例3介紹了另一種求軌跡方程的常用方法——中間變量法.例3有三個作用:第一是教給學生利用中間變量求點的軌跡的方法;第二是向學生說明,如果求得的點的軌跡的方程形式與橢圓的標準方程相同,那么這個軌跡是橢圓;第三是使學生知道,一個圓按某一個方向作伸縮變換可以得到橢圓.
教法建議
。1)使學生了解圓錐曲線在生產和科學技術中的應用,激發學生的學習興趣.
為激發學生學習圓錐曲線的興趣,體會圓錐曲線知識在實際生活中的作用,可由實際問題引入,從中提出圓錐曲線要研究的問題,使學生對所要研究的內容心中有數,如書中所給的例子,還可以啟發學生尋找身邊與圓錐曲線有關的例子。
例如,我們生活的地球每時每刻都在環繞太陽的軌道——橢圓上運行,太陽系的其他行星也如此,太陽則位于橢圓的一個焦點上.如果這些行星運動的速度增大到某種程度,它們就會沿拋物線或雙曲線運行.人類發射人造地球衛星或人造行星就要遵循這個原理.相對于一個物體,按萬有引力定律受它吸引的另一個物體的運動,不可能有任何其他的軌道.因而,圓錐曲線在這種意義上講,它構成了我們宇宙的基本形式,另外,工廠通氣塔的外形線、探照燈反光鏡的軸截面曲線,都和圓錐曲線有關,圓錐曲線在實際生活中的價值是很高的.
。2)安排學生課下切割圓錐形的'事物,使學生了解圓錐曲線名稱的來歷
為了讓學生了解圓錐曲線名稱的來歷,但為了節約課堂時間,教學時應安排讓學生課后親自動手切割圓錐形的蘿卜、膠泥等,以加深對圓錐曲線的認識.
。3)對橢圓的定義的引入,要注意借助于直觀、形象的模型或教具,讓學生從感性認識入手,逐步上升到理性認識,形成正確的概念。
教師可從太陽、地球、人造地球衛星的運行軌道,談到圓蘿卜的切片、陽光下圓盤在地面上的影子等等,讓學生先對橢圓有一個直觀的了解。
教師可事先準備好一根細線及兩根釘子,在給出橢圓在數學上的嚴格定義之前,教師先在黑板上取兩個定點(兩定點之間的距離小于細線的長度),再讓兩名學生按教師的要求在黑板上畫一個橢圓。畫好后,教師再在黑板上取兩個定點(兩定點之間的距離大于細線的長度),然后再請剛才兩名學生按同樣的要求作圖。學生通過觀察兩次作圖的過程,總結出經驗和教訓,教師因勢利導,讓學生自己得出橢圓的嚴格的定義。這樣,學生對這一定義就會有深刻的了解。
。4)將提出的問題分解為若干個子問題,借助多媒體課件來體現橢圓的定義的實質
在教學時,可以設置幾個問題,讓學生動手動腦,獨立思考,自主探索,使學生根據提出的問題,利用多媒體,通過觀察、實驗、分析去尋找解決問題的途徑。在橢圓的定義的教學過程()中,可以提出“到兩定點的距離的和為定值的點的軌跡一定是橢圓嗎”,讓學生通過課件演示“改變焦距或定值”,觀察軌跡的形狀,從而挖掘出定義的內涵,這樣就使得學生對橢圓的定義留下了深刻的印象。
。5)注意橢圓的定義與橢圓的標準方程的聯系
在講解橢圓的定義時,就要啟發學生注意橢圓的圖形特征,一般學生比較容易發現橢圓的對稱性,這樣在建立坐標系時,學生就比較容易選擇適當的坐標系了,即使焦點在坐標軸上,對稱中心是原點(此時不要過多的研究幾何性質).雖然這時學生并不一定能說明白為什么這樣選擇坐標系,但在有了一定感性認識的基礎上再講解選擇適當坐標系的一般原則,學生就較為容易接受,也向學生逐步滲透了坐標法.
。6)推導橢圓的標準方程時教師要注意化解難點,適時地補充根式化簡的方法.
推導橢圓的標準方程時,由于列出的方程為兩個跟式的和等于一個非零常數,化簡時要進行兩次平方,方程中字母超過三個,且次數高、項數多,教學時要注意化解難點,盡量不要把跟式化簡的困難影響學生對橢圓的標準方程的推導過程的整體認識.通過具體的例子使學生循序漸進的解決帶跟式的方程的化簡,即:(1)方程中只有一個跟式時,需將它單獨留在方程的一邊,把其他各項移至另一邊;(2)方程中有兩個跟式時,需將它們放在方程的兩邊,并使其中一邊只有一項.(為了避免二次平方運算)
。7)講解了焦點在x軸上的橢圓的標準方程后,教師要啟發學生自己研究焦點在y軸上的標準方程,然后鼓勵學生探索橢圓的兩種標準方程的異同點,加深對橢圓的認識.
。8)在學習新知識的基礎上要鞏固舊知識
橢圓也是一種曲線,所以第七章所講的曲線和方程的知識仍然使用,在推導橢圓的標準方程中要注意進一步鞏固曲線和方程的概念.對于教材上在推出橢圓的標準方程后,并沒有證明所求得的方程確是橢圓的方程,要注意向學生說明并不與前面所講的曲線和方程的概念矛盾,而是由于橢圓方程的化簡過程是等價變形,而證明過程較繁,所以教材沒有要求也沒有給出證明過程,但學生要注意并不是以后都不需要證明,注意只有方程的化簡是等價變形的才可以不用證明,而實際上學生在遇到一些具體的題目時,還需要具體問題具體分析.
。9)要突出教師的主導作用,又要強調學生的主體作用,課上盡量讓全體學生參與討論,由基礎較差的學生提出猜想,由基礎較好的學生幫助證明,培養學生的團結協作的團隊精神。
高二數學教案10
第1課時算法的概念
[核心必知]
1.預習教材,問題導入
根據以下提綱,預習教材P2~P5,回答下列問題.
(1)對于一般的二元一次方程組a1x+b1y=c1,①a2x+b2y=c2,②其中a1b2-a2b1≠0,如何寫出它的求解步驟?
提示:分五步完成:
第一步,①×b2-②×b1,得(a1b2-a2b1)x=b2c1-b1c2,③
第二步,解③,得x=b2c1-b1c2a1b2-a2b1.
第三步,②×a1-①×a2,得(a1b2-a2b1)y=a1c2-a2c1,④
第四步,解④,得y=a1c2-a2c1a1b2-a2b1.
第五步,得到方程組的解為x=b2c1-b1c2a1b2-a2b1,y=a1c2-a2c1a1b2-a2b1.
(2)在數學中算法通常指什么?
提示:在數學中,算法通常是指按照一定規則解決某一類問題的明確和有限的步驟.
2.歸納總結,核心必記
(1)算法的概念
12世紀
的算法指的是用阿拉伯數字進行算術運算的過程
續表
數學中
的算法通常是指按照一定規則解決某一類問題的明確和有限的步驟
現代算法通?梢跃幊捎嬎銠C程序,讓計算機執行并解決問題
(2)設計算法的目的
計算機解決任何問題都要依賴于算法.只有將解決問題的過程分解為若干個明確的步驟,即算法,并用計算機能夠接受的“語言”準確地描述出來,計算機才能夠解決問題.
[問題思考]
(1)求解某一個問題的算法是否是的?
提示:不是.
(2)任何問題都可以設計算法解決嗎?
提示:不一定.
[課前反思]
通過以上預習,必須掌握的幾個知識點:
(1)算法的概念:;
(2)設計算法的'目的:.
[思考1]應從哪些方面來理解算法的概念?
名師指津:對算法概念的三點說明:
(1)算法是指可以用計算機來解決的某一類問題的程序或步驟,這些程序或步驟必須是明確的和有效的,而且能夠在有限步驟之內完成.
(2)算法與一般意義上具體問題的解法既有聯系,又有區別,它們之間是一般和特殊的關系,也是抽象與具體的關系.算法的獲得要借助一般意義上具體問題的求解方法,而任何一個具體問題都可以利用這類問題的一般算法來解決.
(3)算法一方面具有具體化、程序化、機械化的特點,同時又有高度的抽象性、概括性、精確性,所以算法在解決問題中更具有條理性、邏輯性的特點.
[思考2]算法有哪些特征?
名師指津:(1)確定性:算法的每一個步驟都是確切的,能有效執行且得到確定結果,不能模棱兩可.
(2)有限性:算法應由有限步組成,至少對某些輸入,算法應在有限多步內結束,并給出計算結果.
(3)邏輯性:算法從初始步驟開始,分為若干明確的步驟,每一步都只能有一個確定的繼任者,只有執行完前一步才能進入到后一步,并且每一步都確定無誤后,才能解決問題.
(4)不性:求解某一個問題的算法不一定只有的一個,可以有不同的算法.
(5)普遍性:很多具體的問題,都可以設計合理的算法去解決.
V講一講
1.以下關于算法的說法正確的是()
A.描述算法可以有不同的方式,可用自然語言也可用其他語言
B.算法可以看成按照要求設計好的有限的確切的計算序列,并且這樣的步驟或序列只能解決當前問題
C.算法過程要一步一步執行,每一步執行的操作必須確切,不能含混不清,而且經過有限步或無限步后能得出結果
D.算法要求按部就班地做,每一步可以有不同的結果
[嘗試解答]算法可以看成按照要求設計好的有限的確切的計算序列,并且這樣的步驟或計算序列能夠解決一類問題,故B不正確.
算法過程要一步一步執行,每一步執行操作,必須確切,只能有結果,而且經過有限步后,必須有結果輸出后終止,故C、D都不正確.
描述算法可以有不同的語言形式,如自然語言、框圖語言等,故A正確.
答案:A
判斷算法的關注點
(1)明確算法的含義及算法的特征;
(2)判斷一個問題是否是算法,關鍵看是否有解決一類問題的程序或步驟,這些程序或步驟必須是明確和有效的,而且能夠在有限步內完成.
V練一練
1.(20xx?西南師大附中檢測)下列描述不能看作算法的是()
A.洗衣機的使用說明書
B.解方程x2+2x-1=0
C.做米飯需要刷鍋、淘米、添水、加熱這些步驟
D.利用公式S=πr2計算半徑為3的圓的面積,就是計算π×32
解析:選BA、C、D都描述了解決問題的過程,可以看作算法,而B只描述了一個事例,沒有說明怎樣解決問題,不是算法.
假設家中生火泡茶有以下幾個步驟:
a.生火b.將水倒入鍋中c.找茶葉d.洗茶壺、茶碗e.用開水沖茶
[思考1]你能設計出在家中泡茶的步驟嗎?
名師指津:a→a→c→d→e
[思考2]設計算法有什么要求?
名師指津:(1)寫出的算法必須能解決一類問題;
(2)要使算法盡量簡單、步驟盡量少;
(3)要保證算法步驟有效,且計算機能夠執行.
V講一講
2.寫出解方程x2-2x-3=0的一個算法.
[嘗試解答]法一:算法如下.
第一步,將方程左邊因式分解,得(x-3)(x+1)=0;①
第二步,由①得x-3=0,②或x+1=0;③
第三步,解②得x=3,解③得x=-1.
法二:算法如下.
第一步,移項,得x2-2x=3;①
第二步,①式兩邊同時加1并配方,得(x-1)2=4;②
第三步,②式兩邊開方,得x-1=±2;③
第四步,解③得x=3或x=-1.
法三:算法如下.
第一步,計算方程的判別式并判斷其符號Δ=(-2)2+4×3=16>0;
第二步,將a=1,b=-2,c=-3,代入求根公式x1,x2=-b±b2-4ac2a,得x1=3,x2=-1.
設計算法的步驟
(1)認真分析問題,找出解決此題的一般數學方法;
(2)借助有關變量或參數對算法加以表述;
(3)將解決問題的過程劃分為若干步驟;
(4)用簡練的語言將步驟表示出來.V
練一練
2.設計一個算法,判斷7是否為質數.
解:第一步,用2除7,得到余數1,所以2不能整除7.
第二步,用3除7,得到余數1,所以3不能整除7.
第三步,用4除7,得到余數3,所以4不能整除7.
第四步,用5除7,得到余數2,所以5不能整除7.
第五步,用6除7,得到余數1,所以6不能整除7.
因此,7是質數.
V講一講
3.一次青青草原草原長包包大人帶著灰太狼、懶羊羊和一捆青草過河.河邊只有一條船,由于船太小,只能裝下兩樣東西.在無人看管的情況下,灰太狼要吃懶羊羊,懶羊羊要吃青草,請問包包大人如何才能帶著他們平安過河?試設計一種算法.
[思路點撥]先根據條件建立過程模型,再設計算法.
[嘗試解答]包包大人采取的過河的算法可以是:
第一步,包包大人帶懶羊羊過河;
第二步,包包大人自己返回;
第三步,包包大人帶青草過河;
第四步,包包大人帶懶羊羊返回;
第五步,包包大人帶灰太狼過河;
第六步,包包大人自己返回;
第七步,包包大人帶懶羊羊過河.
實際問題算法的設計技巧
(1)弄清題目中所給要求.
(2)建立過程模型.
(3)根據過程模型建立算法步驟,必要時由變量進行判斷.
V練一練
3.一位商人有9枚銀元,其中有1枚略輕的是假銀元,你能用天平(無砝碼)將假銀元找出來嗎?
解:法一:算法如下.
第一步,任取2枚銀元分別放在天平的兩邊,若天平左、右不平衡,則輕的一枚就是假銀元,若天平平衡,則進行第二步.
第二步,取下右邊的銀元放在一邊,然后把剩下的7枚銀元依次放在右邊進行稱量,直到天平不平衡,偏輕的那一枚就是假銀元.
法二:算法如下.
第一步,把9枚銀元平均分成3組,每組3枚.
第二步,先將其中兩組放在天平的兩邊,若天平不平衡,則假銀元就在輕的那一組;否則假銀元在未稱量的那一組.
第三步,取出含假銀元的那一組,從中任取2枚銀元放在天平左、右兩邊稱量,若天平不平衡,則假銀元在輕的那一邊;若天平平衡,則未稱量的那一枚是假銀元.
高二數學教案11
教學目標
。1)掌握由一點和斜率導出直線方程的方法,掌握直線方程的點斜式、兩點式和直線方程的一般式,并能根據條件熟練地求出直線的方程。
。2)理解直線方程幾種形式之間的內在聯系,能在整體上把握直線的方程。
。3)掌握直線方程各種形式之間的互化。
。4)通過直線方程一般式的教學培養學生全面、系統、周密地分析、討論問題的能力。
。5)通過直線方程特殊式與一般式轉化的教學,培養學生靈活的思維品質和辯證唯物主義觀點。
。6)進一步理解直線方程的概念,理解直線斜率的意義和解析幾何的思想方法。
教學建議
1、教材分析
。1)知識結構
由直線方程的概念和直線斜率的概念導出直線方程的點斜式;由直線方程的點斜式分別導出直線方程的斜截式和兩點式;再由兩點式導出截距式;最后都可以轉化歸結為直線的一般式;同時一般式也可以轉化成特殊式。
。2)重點、難點分析
、俦竟澋闹攸c是直線方程的點斜式、兩點式、一般式,以及根據具體條件求出直線的方程。
解析幾何有兩項根本性的任務:一個是求曲線的方程;另一個就是用方程研究曲線。本節內容就是求直線的方程,因此是非常重要的內容,它對以后學習用方程討論直線起著直接的作用,同時也對曲線方程的學習起著重要的作用。
直線的點斜式方程是平面解析幾何中所求出的第一個方程,是后面幾種特殊形式的源頭。學生對點斜式學習的效果將直接影響后繼知識的學習。
、诒竟澋碾y點是直線方程特殊形式的限制條件,直線方程的整體結構,直線與二元一次方程的關系證明。
2、教法建議
。1)教材中求直線方程采取先特殊后一般的思路,特殊形式的方程幾何特征明顯,但局限性強;一般形式的方程無任何限制,但幾何特征不明顯。教學中各部分知識之間過渡要自然流暢,不生硬。
。2)直線方程的一般式反映了直線方程各種形式之間的統一性,教學中應充分揭示直線方程本質屬性,建立二元一次方程與直線的對應關系,為繼續學習“曲線方程”打下基礎。
直線一般式方程都是字母系數,在揭示這一概念深刻內涵時,還需要進行正反兩方面的分析論證。教學中應重點分析思路,還應抓住這一有利時使學生學會嚴謹科學的分類討論方法,從而培養學生全面、系統、辯證、周密地分析、討論問題的能力,特別是培養學生邏輯思維能力,同時培養學生辯證唯物主義觀點
。3)在強調幾種形式互化時要向學生充分揭示各種形式的特點,它們的幾何特征,參數的意義等,使學生明白為什么要轉化,并加深對各種形式的理解。
。4)教學中要使學生明白兩個獨立條件確定一條直線,如兩個點、一個點和一個方向或其他兩個獨立條件。兩點確定一條直線,這是學生很早就接觸的幾何公理,然而在解析幾何,平面向量等理論中,直線或向量的方向是極其重要的要素,解析幾何中刻畫直線方向的量化形式就是斜率。因此,直線方程的兩點式和點斜式在直線方程的幾種形式中占有很重要的地位,而已知兩點可以求得斜率,所以點斜式又可推出兩點式(斜截式和截距式僅是它們的特例),因此點斜式最重要。教學中應突出點斜式、兩點式和一般式三個教學高潮。
求直線方程需要兩個獨立的條件,要依不同的幾何條件選用不同形式的方程。根據兩個條件運用待定系數法和方程思想求直線方程。
。5)注意正確理解截距的概念,截距不是距離,截距是直線(也是曲線)與坐標軸交點的相應坐標,它是有向線段的數量,因而是一個實數;距離是線段的長度,是一個正實數(或非負實數)。
。6)本節中有不少與函數、不等式、三角函數有關的問題,是函數、不等式、三角與直線的重要知識交匯點之一,教學中要適當選擇一些有關的問題指導學生練習,培養學生的綜合能力。
。7)直線方程的理論在其他學科和生產生活實際中有大量的應用。教學中注意聯系實際和其它學科,教師要注意引導,增強學生用數學的意識和能力。
。8)本節不少內容可安排學生自學和討論,還要適當增加練習,使學生能更好地掌握,而不是僅停留在觀念上。
教學設計示例
直線方程的一般形式
教學目標:
。1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化。
。2)理解直線與二元一次方程的關系及其證明
。3)培養學生抽象概括能力、分類討論能力、逆向思維的習慣和形成特殊與一般辯證統一的觀點。
教學重點、難點:直線方程的一般式。直線與二元一次方程(不同時為0)的對應關系及其證明。
教學用具:計算機
教學方法:啟發引導法,討論法
教學過程:
下面給出教學實施過程設計的簡要思路:
教學設計思路:
。ㄒ唬┮氲脑O計
前邊學習了如何根據所給條件求出直線方程的方法,看下面問題:
問:說出過點(2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?
答:直線方程是,屬于二元一次方程,因為未知數有兩個,它們的次數為一次。
肯定學生回答,并糾正學生中不規范的表述。再看一個問題:
問:求出過點,的直線的方程,并觀察方程屬于哪一類,為什么?
答:直線方程是(或其它形式),也屬于二元一次方程,因為未知數有兩個,它們的次數為一次。
肯定學生回答后強調“也是二元一次方程,都是因為未知數有兩個,它們的次數為一次”。
啟發:你在想什么(或你想到了什么)?誰來談談?各小組可以討論討論。
學生紛紛談出自己的想法,教師邊評價邊啟發引導,使學生的認識統一到如下問題:
【問題1】“任意直線的方程都是二元一次方程嗎?”
。ǘ┍竟澲黧w內容教學的設計
這是本節課要解決的第一個問題,如何解決?自己先研究研究,也可以小組研究,確定解決問題的思路。
學生或獨立研究,或合作研究,教師巡視指導。
經過一定時間的.研究,教師組織開展集體討論。首先讓學生陳述解決思路或解決方案:
思路一:…
思路二:…
……
教師組織評價,確定方案(其它待課下研究)如下:
按斜率是否存在,任意直線的位置有兩種可能,即斜率存在或不存在。
當存在時,直線的截距也一定存在,直線的方程可表示為,它是二元一次方程。
當不存在時,直線的方程可表示為形式的方程,它是二元一次方程嗎?
學生有的認為是有的認為不是,此時教師引導學生,逐步認識到把它看成二元一次方程的合理性:
平面直角坐標系中直線上點的坐標形式,與其它直線上點的坐標形式沒有任何區別,根據直線方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的。
綜合兩種情況,我們得出如下結論:
在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的關于直線的二元一次方程。
至此,我們的問題1就解決了。簡單點說就是:直線方程都是二元一次方程。而且這個方程一定可以表示成或的形式,準確地說應該是“要么形如這樣,要么形如這樣的方程”。
同學們注意:這樣表達起來是不是很啰嗦,能不能有一個更好的表達?
學生們不難得出:二者可以概括為統一的形式。
這樣上邊的結論可以表述如下:
在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的形如(其中、不同時為0)的二元一次方程。
啟發:任何一條直線都有這種形式的方程。你是否覺得還有什么與之相關的問題呢?
【問題2】任何形如(其中、不同時為0)的二元一次方程都表示一條直線嗎?
不難看出上邊的結論只是直線與方程相互關系的一個方面,這個問題是它的另一方面。這是顯然的嗎?不是,因此也需要像剛才一樣認真地研究,得到明確的結論。那么如何研究呢?
師生共同討論,評價不同思路,達成共識:
回顧上邊解決問題的思路,發現原路返回就是非常好的思路,即方程(其中、不同時為0)系數是否為0恰好對應斜率是否存在,即
。1)當時,方程可化為
這是表示斜率為、在軸上的截距為的直線。
。2)當時,由于、不同時為0,必有,方程可化為
這表示一條與軸垂直的直線。
因此,得到結論:
在平面直角坐標系中,任何形如(其中、不同時為0)的二元一次方程都表示一條直線。
為方便,我們把(其中、不同時為0)稱作直線方程的一般式是合理的。
【動畫演示】
演示“直線各參數。gsp”文件,體會任何二元一次方程都表示一條直線。
至此,我們的第二個問題也圓滿解決,而且我們還發現上述兩個問題其實是一個大問題的兩個方面,這個大問題揭示了直線與二元一次方程的對應關系,同時,直線方程的一般形式是對直線特殊形式的抽象和概括,而且抽象的層次越高越簡潔,我們還體會到了特殊與一般的轉化關系。
。ㄈ┚毩曥柟、總結提高、板書和作業等環節的設計在此從略
高二數學教案12
教學內容
教材第2頁的例2,第3頁的小數乘法法則和“做一做”,練習一的第5?9題。
素質教育目標
。ㄒ唬┲R教學點
1.使學生理解一個數乘以小數的意義。
2.掌握小數乘法的計算法則。
。ǘ┠芰τ柧汓c
1.能說出小數乘法算式所表示的意義。
2.能比較正確地計算小數乘法,提高計算能力。
3.培養學生的遷移類推能力和概括能力以及運用所學知識解決新問題的能力。
。ㄈ┑掠凉B透點
繼續滲透轉化思想。
教學重點:
理解一個數乘以小數的意義,會應用小數乘法的計算法則正確地進行計算。
教學難點:
理解一個數乘以小數的意義和小數乘法中積的小數點的定位。
教具學具準備:
口算卡片、投影片。
教學步驟
一、鋪墊孕伏
1.口算:
0.3×6 0.8×4 7.2×0 4.2×8
0.25×4 3.6×3 4.3×5 0.6×9
2.說出下列小數表示的意義:
0.2 0.5 0.45 0.824
使學生明確一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾……
3.復習例1,花布每米6.5元,買5米要用多少元?
。1)指名列式計算,然后說一說小數乘以整數的意義和小數乘以整數的計算方法。
。2)引導學生知道:每米6.5元是單價,5米是數量,求的是總價。根據單價×數量=總價也可以列出乘法算式。
二、探究新知
1.理解一個數乘以小數的意義。
。1)教學例2
、俪鍪纠2花布每米6.5元,買0.5米用多少元?
、谧x題,理解題意,從題中你知道了什么?
引導學生知道:每米6.5元是單價,0.5米是買的數量,求的是總價。根據單價×數量=總價可以列式為6.5×0.5。
教師板書:
6.5×0.5
、塾镁段圖表示題中的數量關系:
、軉l學生理解:0.5米是1米的十分之五,6.5×0.5就是求6.5的十分之五是多少。
教師板書:
求6.5的十分之五
引導學生類推:
6.5×0.4就是求6.5的十分之四是多少,
6.5×0.7就是求6.5的十分之七是多少,
……
一個數乘以零點幾就是求這個數的十分之幾是多少。
互相討論得出結論:一個數乘以一位小數的意義是求這個數的十分之幾。
。2)補充例2,買0.82米用多少元?
、僖龑W生用線段圖表示:
、趩l學生理解:每米6.5元是布的單價,0.82米是買布的數量,求的是總價,列式為6.5×0.82。
教師板書:
6.5×0.82
0.82米是1米的百分之八十二,6.5×0.82就是求6.5的'百分之八十二。
教師板書:
求6.5的百分之八十二
仿照6.5×0.5的教學方法,引導學生類推得出:
一個數乘以兩位小數的意義就是求這個數的百分之幾。
、蹘熒餐〗Y:一個數乘以一位小數的意義是求這個數的十分之幾,乘以兩位小數的意義是求這個數的百分之幾。
、芤龑W生類推:一個數乘以三位小數就是求這個數的千分之幾,一個數乘以四位小數就是求這個數的萬分之幾,……
最后概括板書:一個數乘以小數的意義是求這個數的十分之幾,百分之幾,千分之幾……
2.探究一個數乘以小數的計算方法。
。1)提出問題,學生討論:
計算小數乘以整數,是把小數轉化成整數計算的,6.5×0.5和6.5×0.82這兩個算式中,被乘數和乘數都含有小數位,應該怎樣計算?
。2)通過討論匯報,使學生明白:把6.5×0.5變成整數乘法,6.5變成65擴大了10倍,0.5變成5也擴大了10倍,這樣乘出來的積就擴大了10×10=100倍,要求原來的積,應把乘出來的積再縮小100倍。同時教師板書:
把6.5×0.82變成整數乘法,6.5變成65擴大10倍,0.82變成82擴大100倍,這樣乘出來的積就擴大了10×100=1000倍。要求原來的積,應把乘出來的積再縮小1000倍。教師板書:
說明書寫的格式,并提示學生:要先點小數點,再把小數末尾的“0”劃掉。
3.總結小數乘法的計算法則。
。1)引導學生觀察算式得出:兩個因數中一共有兩位小數,積中就有兩位小數;兩個因數中一共有三位小數,積中就有三位小數。
。2)想一想:6.05×0.82的積中有幾位小數?6.052×0.82的積中有幾位小數?
。3)引導學生概括:兩個因數中一共有幾位小數,積中就幾位小數。
。4)在小數乘以整數的計算方法的基礎上,師生共同歸納總結出小數乘法的計算法則。
。5)完成法則下面的“做一做”。
出示 67×0.3 2.14×6.2 0.375×12.4 2.16×3.52先判斷積里應該有幾位小數,再讓學生獨立計算,然后集體訂正。訂正時學生說一說是怎樣計算的。
三、鞏固發展
1.練習一5題
。1)題,先引導學生理解“十分之三”和“一半”分別用什么數表示,然后學生獨立列式。
。2)題,學生獨立列式,訂正時,說一說根據什么列式的。
2.說出下列算式表示的意義:
2.54×0.8 13×0.36 16.2×15 24×0.035
3.練習一6題
4.在下面各式的積中點上小數點。
5.練習一8題。學生獨立填書,訂正時指名說一說是怎樣想的。
四、全課小結:引導學生回憶這節課學習了什么知識?
五、布置作業:練習一7題、9題。
高二數學教案13
教學目的:
1、掌握掌握平面與平面間距離的概念,并能求出它們的距離
2、弄清平行平面之間的距離的定義;
教學重點:平行平面的距離的求法教學難點:平行平面的距離的求法
教學過程:
一、復習引入:
1、點到平面的距離:已知點是平面外的任意一點,過點作,垂足為,則唯一,則是點到平面的距離即:一點到它在一個平面內的正射影的距離叫做這一點到這個平面的距離(轉化為點到點的'距離)結論:連結平面外一點與內一點所得的線段中,垂線段最短
2、直線到與它平行平面的距離:一條直線上的任一點到與它平行的平面的距離,叫做這條直線到平面的距離(轉化為點面距離)
二、講解新課:
1、兩個平行平面的公垂線、公垂線段:
。1)兩個平面的公垂線:和兩個平行平面同時垂直的直線,叫做兩個平面的公垂線
。2)兩個平面的公垂線段:公垂線夾在平行平面間的部分,叫做兩個平面的公垂線段
。3)兩個平行平面的公垂線段都相等
。4)公垂線段小于或等于任一條夾在這兩個平行平面間的線段長2、兩個平行平面的距離:兩個平行平面的公垂線段的長度叫做兩個平行平面的距離
三、講解范例:
例1如圖,已知正三角形的邊形為,點D到各頂點的距離都是,求點D到這個三角形所在平面的距離解:設為點D在平面內的射影,延長,交于,∴,∴即是的中心,是邊上的垂直平分線,在中,即點D到這個三角形所在平面的距離是。
四、課堂練習:
五、課后作業:
高二數學教案14
簡單的邏輯聯結詞
(一)教學目標
1.知識與技能目標:
(1) 掌握邏輯聯結詞且的含義
(2) 正確應用邏輯聯結詞且解決問題
(3) 掌握真值表并會應用真值表解決問題
2.過程與方法目標:
在觀察和思考中,在解題和證明題中,本節課要特別注重學生思維的嚴密性品質的培養.
3.情感態度價值觀目標:
激發學生的學習熱情,激發學生的求知欲,培養嚴謹的學習態度,培養積極進取的精神.
(二)教學重點與難點
重點:通過數學實例,了解邏輯聯結詞且的含義,使學生能正確地表述相關數學內容。
難點:
1、正確理解命題Pq真假的規定和判定.
2、簡潔、準確地表述命題Pq.
教具準備:與教材內容相關的資料。
教學設想:在觀察和思考中,在解題和證明題中,本節課要特別注重學生思維的嚴密性品質的培養.
(三)教學過程
學生探究過程:
1、引入
在當今社會中,人們從事任何工作、學習,都離不開邏輯.具有一定邏輯知識是構成一個公民的文化素質的重要方面.數學的特點是邏輯性強,特別是進入高中以后,所學的數學比初中更強調邏輯性.如果不學習一定的邏輯知識,將會在我們學習的過程中不知不覺地經常犯邏輯性的錯誤.其實,同學們在初中已經開始接觸一些簡易邏輯的知識.
在數學中,有時會使用一些聯結詞,如且或非。在生活用語中,我們也使用這些聯結詞,但表達的含義和用法與數學中的含義和用法不盡相同。下面介紹數學中使用聯結詞且或非聯結命題時的含義和用法。
為敘述簡便,今后常用小寫字母p,q,r,s,表示命題。(注意與上節學習命題的條件p與結論q的區別)
2、思考、分析
問題1:下列各組命題中,三個命題間有什么關系?
、12能被3整除;
、12能被4整除;
、12能被3整除且能被4整除。
學生很容易看到,在第(1)組命題中,命題③是由命題①②使用聯結詞且聯結得到的新命題。
問題2:以前我們有沒有學習過象這樣用聯結詞且聯結的命題呢?你能否舉一些例子?
例如:命題p:菱形的對角線相等且菱形的對角線互相平分。
3、歸納定義
一般地,用聯結詞且把命題p和命題q聯結起來,就得到一個新命題,記作pq,讀作p且q。
命題pq即命題p且q中的且字與下面命題中的且 字的含義相同嗎?
若 xA且xB,則xB。
定義中的且字與命題中的且 字的含義是類似。但這里的邏輯聯結詞且與日常語言中的和,并且,以及,既又等相當,表明前后兩者同時兼有,同時滿足。說明:符號與開口都是向下。
注意:p且q命題中的.p、q是兩個命題,而原命題,逆命題,否命題,逆否命題中的p,q是一個命題的條件和結論兩個部分.
4、命題pq的真假的規定
你能確定命題pq的真假嗎?命題pq和命題p,q的真假之間有什么聯系?
引導學生分析前面所舉例子中命題p,q以及命題pq的真假性,概括出這三個命題的真假之間的關系的一般規律。
例如:在上面的例子中,第(1)組命題中,①②都是真命題,所以命題③是真命題。
一般地,我們規定:
當p,q都是真命題時,pq是真命題;當p,q兩個命題中有一個命題是假命題時,pq是假命題。
5、例題
例1:將下列命題用且聯結成新命題pq的形式,并判斷它們的真假。
(1)p:平行四邊形的對角線互相平分,q:平行四邊形的對角線相等。
(2)p:菱形的對角線互相垂直,q:菱形的對角線互相平分;
(3)p:35是15的倍數,q:35是7的倍數.
解:(1)pq:平行四邊形的對角線互相平分且平行四邊形的對角線相等.也可簡寫成平行四邊形的對角線互相平分且相等.
由于p是真命題,且q也是真命題,所以pq是真命題。
(2)pq:菱形的對角線互相垂直且菱形的對角線互相平分. 也可簡寫成菱形的對角線互相垂直且平分.
由于p是真命題,且q也是真命題,所以pq是真命題。
(3)pq:35是15的倍數且35是7的倍數. 也可簡寫成35是15的倍數且是7的倍數.
由于p是假命題, q是真命題,所以pq是假命題。
說明,在用且聯結新命題時,如果簡寫,應注意保持命題的意思不變.
例2:用邏輯聯結詞且改寫下列命題,并判斷它們的真假。
(1)1既是奇數,又是素數;
(2)2是素數且3是素數;
6.鞏固練習 :P20 練習第1 , 2題
7.教學反思:
(1)掌握邏輯聯結詞且的含義
(2)正確應用邏輯聯結詞且解決問題
高二數學教案15
教學目標:
1.了解復數的幾何意義,會用復平面內的點和向量來表示復數;了解復數代數形式的加、減運算的幾何意義.
2.通過建立復平面上的點與復數的一一對應關系,自主探索復數加減法的幾何意義.
教學重點:
復數的幾何意義,復數加減法的幾何意義.
教學難點:
復數加減法的幾何意義.
教學過程:
一 、問題情境
我們知道,實數與數軸上的點是一一對應的,實數可以用數軸上的點來表示.那么,復數是否也能用點來表示呢?
二、學生活動
問題1 任何一個復數a+bi都可以由一個有序實數對(a,b)惟一確定,而有序實數對(a,b)與平面直角坐標系中的點是一一對應的,那么我們怎樣用平面上的點來表示復數呢?
問題2 平面直角坐標系中的點A與以原點O為起點,A為終點的向量是一一對應的,那么復數能用平面向量表示嗎?
問題3 任何一個實數都有絕對值,它表示數軸上與這個實數對應的點到原點的距離.任何一個向量都有模,它表示向量的長度,那么相應的`,我們可以給出復數的模(絕對值)的概念嗎?它又有什么幾何意義呢?
問題4 復數可以用復平面的向量來表示,那么,復數的加減法有什么幾何意義呢?它能像向量加減法一樣,用作圖的方法得到嗎?兩個復數差的模有什么幾何意義?
三、建構數學
1.復數的幾何意義:在平面直角坐標系中,以復數a+bi的實部a為橫坐標,虛部b為縱坐標就確定了點Z(a,b),我們可以用點Z(a,b)來表示復數a+bi,這就是復數的幾何意義.
2.復平面:建立了直角坐標系來表示復數的平面.其中x軸為實軸,y軸為虛軸.實軸上的點都表示實數,除原點外,虛軸上的點都表示純虛數.
3.因為復平面上的點Z(a,b)與以原點O為起點、Z為終點的向量一一對應,所以我們也可以用向量來表示復數z=a+bi,這也是復數的幾何意義.
6.復數加減法的幾何意義可由向量加減法的平行四邊形法則得到,兩個復數差的模就是復平面內與這兩個復數對應的兩點間的距離.同時,復數加減法的法則與平面向量加減法的坐標形式也是完全一致的.
四、數學應用
例1 在復平面內,分別用點和向量表示下列復數4,2+i,-i,-1+3i,3-2i.
練習 課本P123練習第3,4題(口答).
思考
1.復平面內,表示一對共軛虛數的兩個點具有怎樣的位置關系?
2.如果復平面內表示兩個虛數的點關于原點對稱,那么它們的實部和虛部分別滿足什么關系?
3.“a=0”是“復數a+bi(a,b∈R)是純虛數”的__________條件.
4.“a=0”是“復數a+bi(a,b∈R)所對應的點在虛軸上”的_____條件.
例2 已知復數z=(m2+m-6)+(m2+m-2)i在復平面內所對應的點位于第二象限,求實數m允許的取值范圍.
例3 已知復數z1=3+4i,z2=-1+5i,試比較它們模的大。
思考 任意兩個復數都可以比較大小嗎?
例4 設z∈C,滿足下列條件的點Z的集合是什么圖形?
。1)│z│=2;(2)2<│z│<3.
變式:課本P124習題3.3第6題.
五、要點歸納與方法小結
本節課學習了以下內容:
1.復數的幾何意義.
2.復數加減法的幾何意義.
3.數形結合的思想方法.
【高二數學教案】相關文章:
高二數學教案01-26
高二數學教案【精選】10-18
高二數學教案02-06
高二數學教案(推薦)12-16
高二數學教案模板12-16
關于高二數學教案12-16
高二數學教案優秀10-12
高二數學教案范文01-06
高二數學教案精品01-24
高二數學教案(合集)03-26