七年級數學教案優秀[精華8篇]
作為一名優秀的教育工作者,就不得不需要編寫教案,教案是教材及大綱與課堂教學的紐帶和橋梁。我們該怎么去寫教案呢?以下是小編精心整理的七年級數學教案優秀,供大家參考借鑒,希望可以幫助到有需要的朋友。
七年級數學教案優秀1
教學目標
1,通過對數“零”的意義的探討,進一步理解正數和負數的概念;
2,利用正負數正確表示相反意義的量(規定了指定方向變化的量)
3,進一步體驗正負數在生產生活實際中的廣泛應用,提高解決實際問題的能力,激發學習數學的興趣。
教學難點
深化對正負數概念的理解
知識重點
正確理解和表示向指定方向變化的量
教學過程(師生活動)
設計理念
知識回顧與深化
回顧:上一節課我們知道了在實際生產和生活中存在著兩種不同意義的量,為了區分這兩種量,我們用正數表示其中一種意義的量,那么另一種意義的量就用負數來表示。這就是說:數的范圍擴大了(數有正數和負數之分)。那么,有沒有一種既不是正數又不是負數的數呢?
問題1:有沒有一種既不是正數又不是負數的數呢?學生思考并討論。(數0既不是正數又不是負數,是正數和負數的分界,是基準。這個道理學生并不容易理解,可視學生的討論情況作些啟發和引導,下面的例子供參考)
例如:在溫度的表示中,零上溫度和零下溫度是兩種不同意義的量,通常規定零上溫度用正數來表示,零下溫度用負數來表示。那么某一天某地的溫度是零上7℃,最低溫度是零下5℃時,就應該表示為+7℃和-5℃,這里+7℃和-5℃就分別稱為正數和負數。那么當溫度是零度時,我們應該怎樣表示呢?(表示為0℃),它是正數還是負數呢?由于零度既不是零上溫度也不是零下溫度,所以,0既不是正數也不是負數?
問題2:引入負數后,數按照“兩種相反意義的量”來分,可以分成幾類?“數0耽不是正數,也不是負數”也應看作是負數定義的一部分。在引入負數后,0除了表示一個也沒有以外,還是正數和負數的分界。了解。的這一層意義,也有助于對正負數的理解;且對數的順利擴張和有理毅概念的建立都有幫助。所舉的例子,要考慮學生的可接受性!皵0既不是正數,也不是負數”應從相反意義的1這個角度來說明。這個問題只要初步認識即可,不必深究。
問題3:教科書第6頁例題
說明:這是一個用正負數描述向指定方向變化情況的例子,通常向指定方向變化用正數表示;向指定方向的相反方向變化用負數表示。這種描述在實際生活中有廣泛的應用,應予以重視。教學中,應讓學生體驗“增長”和“減少”是兩種相反意義的量,要求寫出“體重的增長值”和“進出口額的增長率”,就暗示著用正數來表示增長的量。
歸納:在同一個問題中,分別用正數和負數表示的量具有相反的意義(教科書第6頁)。
類似的例子很多,如:水位上升-3m,實際表示什么意思呢?收人增加-10%,實際表示什么意思呢?等等?梢暯虒W中的實際情況進行補充。
這種用正負數描述向指定方向變化情況的例子,在實際生活中有廣泛的應用,按題意找準哪種意義的量應該用正數表示是解題的關健。這種描述具有相反數的影子,例如第(1)題中小明的體重可說成是減少-2kg,但現在不必向學生提出。
鞏固練習教科書第6頁練習
閱讀思考
教科書第8頁閱讀與思考是正負數應用的很好例子,要花時間讓學生討論交流
小結與作業
課堂小結以問題的形式,要求學生思考交流:
1,引人負數后,你是怎樣認識數0的.,數0的意義有哪些變化?
2,怎樣用正負數表示具有相反意義的量?(用正數表示其中一種意義的量,另一種量用負數表示;特別地,在用正負數表示向指定方向變化的量時,通常把向指定方向變化的量規定為正數,而把向指定方向的相反方向變化的量規定為負數。)
本課作業1,必做題:教科書第7頁習題1.1第3,6,7,8題
3,選做題:教師自行安排
本課教育評注(課堂設計理念,實際教學效果及改進設想)
1,本課主要目的是加深對正負數概念的理解和用正負數表示實際生產生活中的向指
定方向變化的量。
2,“數0既不是正數,也不是負數,’(要從0不屬于兩種相反意義的量中的任何一種上來理解)也應看作是負數定義的一部分。在引人負數后,除了表示一個也沒有以外,還是正數和負數的分界。了解0的這一層意義,也有助于對正負數的理解,且對數的順利擴張和有理數概念的建立都有幫助。由于上節課的重點是建立兩種相反意義量的概念,考慮到學生的可接受性,所以作為知識的回顧和深化而放到本課。
3,教科書的例子是用正負數表示(向指定方向變化的)量的實際應用,用這種方式描述的例子很多,要盡量使學生理解。
4,本設計體現了學生自主學習、交流討論的教學理念,教學中要讓學生體驗數學知識在實際中的合理應用,在體驗中感悟和深化知識。通過實際例子的學習激發學生學習數學的興趣。
七年級數學教案優秀2
教學目標
1, 掌握有理數的概念,會對有理數按照一定的標準進行分類,培養分類能力;
2, 了解分類的標準與分類結果的相關性,初步了解“集合”的含義;
3, 體驗分類是數學上的常用處理問題的方法。
教學難點 正確理解分類的標準和按照一定的標準進行分類
知識重點 正確理解有理數的概念
教學過程
探索新知
在前兩個學段,我們已經學習了很多不同類型的數,通過上兩節課的學習,又知道了現在的數包括了負數,現在請同學們在草稿紙上任意寫出3個數(同時請3個同學在黑板上寫出).
問題1:觀察黑板上的9個數,并給它們進行分類.
學生思考討論和交流分類的情況.
學生可能只給出很粗略的分類,如只分為“正數”和“負數”或“零”三類,此時,教師應給予引導和鼓勵.
例如,
對于數5,可這樣問:5和5. 1有相同的類型嗎?5可以表示5個人,而5. 1可以表示人數嗎?(不可以)所以它們是不同類型的數,數5是正數中整個的數,我們就稱它為“正整數”,而5. 1不是整個的數,稱為“正分數,,.…(由于小數可化為分數,以后把小數和分數都稱為分數)
通過教師的引導、鼓勵和不斷完善,以及學生自己的概括,最后歸納出我們已經學過的5類不同的數,它們分別是“正整數,零,負整數,正分數,負分數,”。
按照書本的說法,得出“整數”“分數”和“有理數”的.概念.
看書了解有理數名稱的由來.
“統稱”是指“合起來總的名稱”的意思.
試一試:
按照以上的分類,你能作出一張有理數的分類表嗎?你能說出以上有理數的分類是以什么為標準的嗎?(是按照整數和分數來劃分的) 分類是數學中解決問題的常用手段,這個引入具有開放的特點,學生樂于參與
學生自己嘗試分類時,可能會很粗略,教師給予引導和鼓勵,劃分數的類型要從文字所表示的意義上去引導,這樣學生易于理解。
有理數的分類表要在黑板或媒體上展示,分類的標準要引導學生去體會
練一練
1,任意寫出三個有理數,并說出是什么類型的數,與同伴進行交流.
2,教科書第10頁練習.
此練習中出現了集合的概念,可向學生作如下的說明.
把一些數放在一起,就組成了一個數的集合,簡稱“數集”,所有有理數組成的數集叫做有理數集.類似地,所有整數組成的數集叫做整數集,所有負數組成的數集叫做負數集……;
數集一般用圓圈或大括號表示,因為集合中的數是無限的,而本題中只填了所給的幾個數,所以應該加上省略號:。
思考:
問題1:上面練習中的四個集合合并在一起就是全體有理數的集合嗎?
創新探究
問題2:有理數可分為正數和負數兩大類,對嗎?為什么?
教學時,要讓學生總結已經學過的數,鼓勵學生概括,通過交流和討論,教師作適當的指導,使學生了解分類的標準不一樣時,分類的結果也是不同的,所以分類的標準要明確,使分類后每一個參加分類的象屬于其中的某一類而只能屬于這一類,教學中教師可舉出通俗易懂的例子作些說明,可以按年齡,也可以按性別、地域來分等。
小結與作業
到現在為止我們學過的數都是有理數(圓周率除外),有理數可以按不同的標準進行分類,標準不同,分類的結果也不同。
七年級數學教案優秀3
一、內容和內容解析
1、內容
無限不循環小數;求算術平方根的更一般的方法——用有理數估算、用計算器求值。
2、內容解析
無限不循環小數的引入,教科書是通過用有理數估計的大小,得到的越來越精確的近似值,進而發現是一個無限不循環小數的結論。發現無限不循環小數的過程就是反復運用有理數估計無理數的大小的過程。
用有理數估計(一個帶算術平方根符號的)無理數的大致范圍,通常利用與被開方數比較接近的完全平方數的算術平方根來估計這個被開方數的算術平方根的大小,這種估算在生活中經常遇到,是學生生活中需要的一種能力。
使用計算器可以求任何正數的平方根,但不同品牌的計算器,按鍵順序可能不同,教學中,可以讓學生根據計算器品牌,參考使用說明書,學習使用計算器求算術平方根的方法。這完全可以讓學生自己完成。
基于以上分析,確定本節課的教學重點為:用有理數估計一個(帶算術平方根符號的)無理數的大致范圍。
二、目標和目標解析
1、教學目標
。1)通過估算,體驗“無限不循環小數”的含義,能用估算求一個數的算術平方根的近似值。
。2)會利用計算器求一個正數的算術平方根;理解被開方數擴大(或縮。┡c它的算術平方根擴大(或縮。┑囊幝。
2、目標解析
。1)學生了解“無限不循環小數”是指小數位數無限,且小數部分不循環的小數,感受這是不同于有理數的一類新數;對于估算,學生要會利用估算比較大;了解夾逼法,采用不足近似值和過剩近似值來估計一個數的范圍。
。2)學生會概述利用計算器求一個正數的算術平方根的程序(按鍵的順序);明白利用計算器求一個正數的'算術平方根,計算器顯示的結果可能是近似值;會利用作為工具的計算器探究算術平方根的規律,理解被開方數小數點向右或向左移動2位,它的算術平方根就相應地向右或向左移動1位,即被開方數每擴大(或縮。100倍,它的算術平方根就擴大(或縮。10倍。
三、教學問題診斷分析
用有理數估計一個(帶算術平方根符號的)無理數的大致范圍,需要學生理解“算術平方根的被開方數越大,對應的算術平方根也越大”的性質,還要判斷被開方數在哪兩個相鄰的整數平方數之間。為了讓學生體驗“無限不循環小數”的含義,還要多次采用“夾逼法”進行估計,即利用其一系列不足近似值和過剩近似值來估計它的大小,這些對學生綜合運用知識的能力有較高的要求。
基于以上分析,本課的教學難點是:用有理數估計一個(帶算術平方根符號的)無理數的大致范圍的過程,體驗“無限不循環小數”的含義。
四、教學過程設計
1、梳理舊知,引出新課
問題1
。1)什么是算術平方根?怎樣表示?
。2)負數有算術平方根嗎?
師生活動學生回答,教師說明:我們上節課已經能求出一些平方數的算術平方根了,例如,=4;但實際生活中,我們還會遇到被開方數不是一個數的平方數的情況,這時,它的算術平方根又該怎祥求呢?
設計意圖:復習與本節課相關的知識,通過設問,引出本節課學習內容。
2、問題探究,學習新知
問題2能否用兩個面積為1dm的小正方形拼成一個面積為2dm的大正方形?
師生活動:學生動手操作,在小組內討論交流,教師展示剪拼方法。
追問(1)拼成的這個面積為2dm
的大正方形的邊長應該是多少呢?
師生活動:學生自行解答,教師對解答有困難的學生進行指導。
追問(2)小正方形的對角線的長是多少呢?
師生活動:學生根據圖形,不難回答,小正方形的對角線的長就是大正方形的邊長dm。
設計意圖:通過實際問題的操作探究,說明實際生活中確實存在被開方數不是一個數的平方數的情況,激發學生學習積極性,追問(2)主要為后面介紹用數軸上的點表示作準備。
問題3
有多大呢?為了弄清這個問題,請同學們探究“
在哪兩個整數之間呢?”
師生活動:先讓學生思考討論并估計大概有多大,由直觀可知大于1而小于2,教師引導學生利用“被開方數越大,對應的算術平方根也越大”說明理由,教師板書推理過程。
追問(1)那么
是1點幾呢?你能不能得到
的更精確的范圍?
師生活動:學生用試驗的方法可得到平方數小于2且最接近的1位小數是1.4,而平方數大于2且最接近的1位小數是1.5,所以大于1.4而小于1.5……在此基礎上教師按教科書上的推理進行講解并板書。說明是一個無限不循環小數,以及什么是無限不循環小數。并要求學生回憶以前學過的數,進行比較。
追問(2)實際上,許多正有理數的算術平方根,如等都是無限不循環小數。根據估計的大小的方法,請你估計的整數部分是多少?
設計意圖:通過對大小的估計,初步掌握利用的一系列不足近似值和過剩近似值來估計它的大小的方法,并從中體會是一個無限不循環小數。讓學生回憶以前學過的數,通過比較,了解無限不循環小數的特征,為后面學習無理數打下基礎。追問(2)主要為及時鞏固估算方法
3、用計算器,求算術根
例1用計算器求下列各式的值:
師生活動:教師指導學生操作,獲得問題答案。解答完(2)后,讓學生與上面所估計的大小進行比較,體會夾逼法的可行性。說明用計算器可以求出任意一個正數的算術平方根,但不同品牌的計算器,按鍵順序可能有所不同。用計算器求出的算術平方根,有的是準確值,如題(1),有的是近似值,如題(2)。
設計意圖:使學生會使用計算器求算術平方根。
練習教科書第44頁練習1。
師生活動:學生獨立完成后交流。
設計意圖:鞏固計算器求算術平方根。
4、綜合應用,鞏固所學
現在我們來解決本章引言中的問題。
問題4(1)你會表示
。2)用計算器求(用科學記數法把結果寫成的形式,其中保留小數點后一位)
師生活動:學生理解題意,根據公式,可得,代入,利用計算器求出
設計意圖:讓學生體會計算器在解決實際問題中的應用。
問題5利用計算器計算下表中的算術平方根,并將計算結果填在表中。
師生活動:學生計算填表。
追問(1)你發現了什么規律?
師生活動:學生思考、討論,教師歸納:被開方數的小數點向右或向左移動2位,它的算術平方根的小數點就相應地向右或向左移動1位。
追問(2)你能說出其中的道理嗎?
師生活動:學生討論,交流,教師引導學生從被開方數擴大的倍數與其算術平方根擴大的倍數思考回答。即當被開方數擴大(或縮。100倍,10000倍…時,其算術平方根相應地擴大(或縮。10倍,100倍……
追問(3)用計算器計算
。ň_到0.001),并利用剛才的得到規律說出的近似值。
師生活動:學生計算,并根據所獲規律回答。
追問(4)你能根據的值說出是多少嗎?
師生活動:學生回答,因為被開方數30與3不符合上述規律,所以無法由的值說出是多少。
設計意圖:鞏固用計算器求算術平方根以及其在探究規律中的應用。
例2小麗想用一塊面積為400cm的長方形紙片,沿著邊的方向剪出一塊面積為300cm的長方形紙片,使它的長寬之比為3:2。她不知能否裁得出來,正在發愁。小明見了說:“別發愁,一定能用一塊面積大的紙片裁出一塊面積小的紙片!蹦阃庑∶鞯恼f法嗎?小麗能用這塊紙片裁出符合要求的紙片嗎?
師生活動:教師出示問題,學生理解題意,學生可能會和小明有同樣的想法,此時教師進行如下引導:
。1)你能將這個問題轉化為數學問題嗎?
。2)如何求出長方形的長和寬?
。3)長方形的長和寬與正方形的邊長之間的大小關系是什么?
最后給出完整的解答過程。
設計意圖:讓學生體驗估算的實際應用。
5、歸納小結:
師生共同回顧本節課所學內容,并請學生回答以下問題:
。1)利用夾逼法來求算術平方根的近似值的依據是什么?
。2)利用計算器可以求出任意正數的算術平方根或近似值嗎?
。3)被開方數擴大(或縮。┡c它的算術平方根擴大(或縮。┑囊幝墒窃鯓拥哪?
。4)怎樣的數是無限不循環小數?
設計意圖:讓學生對本節課知識進行梳理,同時也幫助學生養成良好的習慣。
6、布置作業:
教科書習題6.1第6.9.10題。
五、目標檢測設計
1、求整數部分。
【設計意圖】主要考查學生的估算能力。
2、比較下列各組數的大小。
【設計意圖】主要考查學生的估算和比較大小的能力。
【設計意圖】主要考查學生對算術平方根概念以及有關規律的理解。
3、國際比賽的足球場的長在100m到110m之間,寬在64m到75m之間,現有一個長方形的足球場其長是寬的1.5倍,面積為7560m,問:這個足球場能用作國際比賽嗎?
【設計意圖】主要考查學生運用算術平方根解決實際問題的能力。
七年級數學教案優秀4
第一章有理數
(1)本周小張一共用掉了多少錢?存進了多少錢?
根據上面的記錄,問:哪幾天生產的摩托車比計劃量多?星期幾生產的摩托車最多,是多少輛?星期幾生產的摩托車最少,是多少輛?
夯實基??
(1)序號為幾的零件最接近標準?
、-(-) 0.025.
第2課時加法運算律
教學目標:
1.能運用加法運算律簡化加法運算。
2.理解加法運算律在加法運算中的作用,適當進行推理訓練。
教學重點:如何運用加法運算律簡化運算。
教學難點:靈活運用加法運算律。
教與學互動設計:
(一)情境創設,導入新課
思考:在小學里,我們學過的加法運算有哪些運算律?它們的內容是什么?能否舉一兩個例子來?那這些加法運算律還適用于有理數范圍嗎?今天,我們一起來探究這個問題。
(二)合作交流,解讀探究
計算:20+(-30)與(-30)+20兩次得到的和相同嗎?
得出結論:20+(-30)=(-30)+20
換幾組數去試:得到加法交換律:a+b= (學生填).
其實,學生在小學中就已經接觸到運算律,此時,可以讓學生回憶在小學中除了學習了加法的交換律,還學習了加法的哪種運算律?(結合律)
計算:(1)[8+(-5)]+(-4);
(2)8+[(-5)+(-4)].
得出結論:加法結合律:(a+b)+c= .
【例1】計算:
16+(-25)+24+(-35)
【例2】課本p20例3
說明:把互為相反數的'一對數結合起來相加,可以使運算簡化,這種方法是使用加法交換律和加法結合律。
總結:在進行多個有理數相加時,在下列情況下一般可以用加法交換律和加法結合律簡化運算:①有些加數相加后可以得到整數時,可以先行相加;②有相反數可以互相消去,和為0,可以先行相加;③有許多正數和負數相加時,可以先把符號相同的數相加,即正數和正數相加,負數和負數相加,再把一個正數和一個負數相加。
(三)應用遷移,鞏固提高
?例3】利用有理數的加法運算律計算,使運算簡便。
(1)(+9)+(-7)+(+10)+(-3)+(-9)
(2)(+0.36)+(-7.4)+(+0.03)+(-0.6)+(+0.64)
(3)(+1)+(-2)+(+3)+(-4)+…+(+20xx)+(-20xx)
?例4】某出租司機某天下午營運全是在東西走向的人民大道上進行的,如果規定向東為正,向西為負,他這天下午行車里程如下:(單位:千米)+15,+14,-3,-11,+10,-12,+4,-15,+16,-18.
(1)他將最后一名乘客送到目的地,該司機與下午出發點的距離是多少千米?
(2)若汽車耗油量為a公升/千米,這天下午汽車共耗油多少公升?
(四)總結反思,拓展升華
本節課我們探索了有理數的加法交換律和結合律。靈活運用加法的運算律會使運算簡便。一般情況下,我們將互為相反數的數相結合,同分母的分數相結合,能湊整數的數相結合,正數負數分別相加,從而使計算簡便。
(五)課堂跟蹤反饋
夯實基礎
1.運用加法的運算律計算(+6)+(-18)+(+4)+(-6.8)+18+(-3.2)最適當的是( )
a.[(+6)+(+4)+18]+[(-18)+(-6.8)+(-3.2)]
b.[(+6)+(-6.8)+(+4)]+[(-18)+18+(-3.2)]
c.[(+6)+(-18)]+[(+4)+(-6.8)]+[18+(-3.2)]
d.[(+6)+(+4)]+[(-3.2)+(-6.8)]+[(-18)+18)]
2.計算:(-2)+4+(-6)+8+…+(-98)+100.
提升能力
3.小李到銀行共辦理了四筆業務,第一筆存入了120元,第二筆支取了85元,第三筆支取了70元,第四筆存入了130元。如果將這四筆業務合并為一筆,請你替他策劃一下這一筆業務該怎樣做?
4.某檢修小組乘汽車沿公路檢修線路,約定前進為正,后退為負。某天自a地出發到收工時所走路線(單位:千米)為:+10,-3,+4,+2,-8,+13,-2,+12,+8,+5.
(1)問收工時距a地多遠?
(2)若每千米路程耗油0.2升,問從a地出發到收工共耗油多少升?
第3課時有理數的減法
教學目標:
1.經歷探索有理數減法法則的過程,理解有理數減法法則。
2.會熟練進行有理數減法運算。
教學重點:有理數減法法則和運算。
教學難點:有理數減法法則的推導。
教與學互動設計
(一)創設情景,導入新課
觀察溫度計:
你能從溫度計看出4℃比-3℃高出多少度嗎?
學生普遍能直觀地看出4℃比-3℃高7℃,進一步地假定某地一天的氣溫是-3~4℃,那么溫差(減最低氣溫,單位℃)如何用算式表示?
按照剛才觀察到的結果,可知4-(-3)=7 ①,而4+(+3)=7 ②,∴由①②可知:4-(-3)=4+(+3) ③,上述結論的獲得應放手讓學生回答。
(二)動手實踐,發現新知
觀察、探究、討論:從③式能看出減-3相當于加哪個數嗎?
結論:減去-3等于加上-3的相反數+3.
(三)類比探究,總結提高
如果將4換成-1,還有類似于上述的結論嗎?
先讓學生直觀觀察,然后教師再利用“減法是與加法相反的運算”引導學生換一個角度去驗算。
計算(-1)-(-3)就是要求一個數x,使x與-3相加得-1,因為2與-3相加得-1,所以x應是2,即(-1)-(-3)=2 ①,
又因為(-1)+(+3)=2 ②,
由①②有(-1)-(-3)=-1+(+3) ③,
即上述結論依然成立。
試一試:如果把4換成0、-5,用上面的方法考慮0-(-3),(-5)-(-3),這些數減-3的結果與它加上+3的結果相同嗎?
讓學生利用“減法是加法的相反運算”得出結果,再與加法算式的結果進行比較,從而得出這些數減-3的結果與它們加+3的結果相同的結論。
再試:把減數-3換成正數,結果又如何呢?
計算9-8與9+(-8);15-7與15+(-7)
從中又能有新發現嗎?
讓學生通過計算總結如下結論:減去一個正數等于加上這個正數的相反數。
歸納:由上述實驗可發現,有理數的減法可以轉化為加法來進行。
減法法則:減去一個數,等于加上這個數的相反數。
用字母表示:a-b=a+(-b).
(在上述實驗中,逐步滲透了一種重要的數學思想方法——轉化)
(四)例題分析,運用法則
【例】計算:
(1)(-3)-(-5); (2)0-7;
(3)7.2-(-4.8);(4)-3-5.
(五)總結鞏固,初步應用
總結這節課我們學習了哪些數學知識和數學思想?你能說一說嗎?
教師引導學生回憶本節課所學內容,學生回憶交流,教師和學生一起補充完善,使學生更加明晰所學的知識。
七年級數學教案優秀5
教學目標
1,掌握數軸的概念,理解數軸上的點和有理數的對應關系;
2,會正確地畫出數軸,會用數軸上的點表示給定的有理數,會根據數軸上的點讀出所表示的有理數;
3,感受在特定的條件下數與形是可以相互轉化的,體驗生活中的數學。
教學難點數軸的概念和用數軸上的點表示有理數
知識重點
教學過程(師生活動)設計理念
設置情境
引入課題教師通過實例、課件演示得到溫度計讀數.
問題1:溫度計是我們日常生活中用來測量溫度的重要工具,你會讀溫度計嗎?請你嘗試讀出圖中三個溫度計所表示的溫度?
。ǘ嗝襟w出示3幅圖,三個溫度分別為零上、零度和零下)
問題2:在一條東西向的馬路上,有一個汽車站,汽車站東3 m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3 m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.
。ㄐ〗M討論,交流合作,動手操作)創設問題情境,激發學生的學習熱情,發現生活中的數學
點表示數的感性認識。
點表示數的理性認識。
合作交流
探究新知教師:由上述兩問題我們得到什么啟發?你能用一條直線上的點表示有理數嗎?
讓學生在討論的基礎上動手操作,在操作的基礎上歸納出:可以表示有理數的直線必須滿足什么條件?
從而得出數軸的三要素:原點、正方向、單位長度體驗數形結合思想;只描述數軸特征即可,不用特別強調數軸三要求。
從游戲中學數學做游戲:教師準備一根繩子,請8個同學走上來,把位置調整為等距離,規定第4個同學為原點,由西向東為正方向,每個同學都有一個整數編號,請大家記住,現在請第一排的同學依次發出口令,口令為數字時,該數對應的同學要回答“到”;口令為該同學的名字時,該同學要報出他對應的“數字”,如果規定第3個同學為原點,游戲還能進行嗎?學生游戲體驗,對數軸概念的理解
尋找規律
歸納結論問題3:
1,你能舉出一些在現實生活中用直線表示數的實際例子嗎?
2,如果給你一些數,你能相應地在數軸上找出它們的準確位置嗎?如果給你數軸上的點,你能讀出它所表示的數嗎?
3,哪些數在原點的`左邊,哪些數在原點的右邊,由此你會發現什么規律?
4,每個數到原點的距離是多少?由此你會發現了什么規律?
。ㄐ〗M討論,交流歸納)
歸納出一般結論,教科書第12的歸納。這些問題是本節課要求學會的技能,教學中要以學生探究學習為主來完成,教師可結合教科書給學生適當指導。
鞏固練習
教科書第12頁練習
小結與作業
課堂小結請學生總結:
1,數軸的三個要素;
2,數軸的作以及數與點的轉化方法。
本課作業1,必做題:教科書第18頁習題1.2第2題
2,選做題:教師自行安排
本課教育評注(課堂設計理念,實際教學效果及改進設想)
1,數軸是數形轉化、結合的重要媒介,情境設計的原型來源于生活實際,學生易于體驗和接受,讓學生通過觀察、思考和自己動手操作、經歷和體驗數軸的形成過程,加深對數軸概念的理解,同時培養學生的抽象和概括能力,也體出了從感性認識,到理性認識,到抽象概括的認識規律。
2,教學過程突出了情竟到抽象到概括的主線,教學方法體了特殊到一般,數形結合的數學思想方法。
3,注意從學生的知識經驗出發,充分發揮學生的主體意識,讓學生主動參與學習活,并引導學生在課堂上感悟知識的生成,發展與變化,培養學生自主探索的學習方法。
七年級數學教案優秀6
教學目標
。ㄒ唬┙虒W知識點
1、了解近似數的概念,并按要求取近似數
2、體會近似數的意義及在生活中的作用
。ǘ┠芰τ柧氁
能根據實際問題的需要選取近似數,收集數據
。ㄈ┣楦信c價值觀要求
進一步體會數學的應用價值,發展“用數學”的信心和能力
教學重點
1、體會和感受生活中的近似數和精確數,明白測量的結果都是近似數
2、能按要求對一個數四舍五入取近似數
教學難點
合理地對一個數四舍五入取近似值
教學方法
實驗——講——練相結合
通過測量實驗體會生活中存在著近似數和精確數,經過講解和練習能將一個數按要求取近似值
教具準備
1、收集不同形狀的樹葉制成標本
2、最小單位是厘米的刻度尺和最小單位是毫米的刻度尺
教學過程
、、創設情景,引入新課
。蹘煟菰谖覀儗W習和生活中,經常會遇到一些數據。例如:
。1)小明班上有45人;
。2)吐魯番盆地低于海平面155米;
。3)某次地震中,傷亡10萬人;
。4)小紅測得數學書的長度為21.0厘米
而這些數據在收集的過程中,有些是精確的,而有些由于客觀條件無法或難以得到精確數據或無需要得到精確數據而取了近似數
憑你生活的經驗,你能判斷一下,哪些是精確數?哪些是近似數嗎?
。凵菸艺J為第(1)個中的數據是精確的,而第(2)、(3)、(4)中的數據都是近似的
。蹘煟莺芎,下面我們接著來做一個實驗,進一步體驗近似數的意義和在生活中的作用、
、、引入新課,獲得直觀的體驗
1、實驗——測得樹葉的長度
。蹘煟萃瑢W們在下面收集了不少的樹葉,把這些樹葉制成標本的時候,要求必須在標本中注明每片樹葉的長度,下面我們就以同桌為一小組,用你準備好的最小刻度是厘米和最小刻度是毫米的刻度尺測量你收集到的樹葉的長度,并讀取數據
。ń處熆梢宰寣W生交流,討論讀取數據的方法,同時給予指導,讓同學們體驗到測量讀取的數據是有誤差的)
。蹘煟菰谕瑢W們測量的過程中,同桌的小明和小穎用最小單位不同的刻度尺測量了同一片樹葉的長度,如圖3-1所示:
圖3-1
。1)根據小明的測量方法,你能知道他用的刻度尺最小刻度是什么嗎?這片樹葉的長度約為多少?根據小穎的測量呢?
。2)誰的測量結果更精確一些?說說你的理由
。凵菪∶饔玫目潭瘸咦钚挝皇抢迕,這片樹葉的長度約為6.8厘米,其中6是精確的,8是估計的,即是近似的;小穎用的刻度尺最小單位是毫米,她測量的結果可以讀成6.78厘米,其6和7都是精確的,而8是估計的,即是近似的
。凵輳膭偛胚@位同學的分析,很容易看出小穎測量的結果要比小明的更精確一些
。蹘煟萃瑢W們分析得很精細,同桌的小明和小穎共收集了12片樹葉,測得剛才那片樹葉的長度的值分別約為6.8厘米和6.78厘米、在這一收集數據的過程中,哪些數據是精確的,哪些數據是近似的呢?
。凵菟麄円还彩占12片樹葉,這個數據是精確的,而測量的樹葉的長度的值是近似的
。蹘煟荽蠹疫可以用你的刻度尺測量一下桌子的長度、厚度,數學課本的長度、厚度,又可以讀出一些數據,它們是精確的還是近似的?
。凵菸覝y得我的課桌的長度是80.5厘米,它是近似的
。凵菸覝y得課桌的長度是80.45厘米,它也是近似數
。蹘煟萦纱,我們可知測量得出的結果都是近似的,例如珠峰的高度是8848米,是測量得出的,它是近似數
在生活中,除了測量的結果是近似數以外,還有沒有其他數據也是近似的?
。凵萦,例如方便面袋子上寫著:總凈含量110克,數據110克是近似的
。凵蒿嬃贤皹俗⒌膬艉渴350 ml也是近似數
。凵萏鞖忸A報中報到今天的最高氣溫是28℃,“28℃”這個數據也是近似數
。凵菰蹅冞@本教科書字數是202千字,“202千字”這個數據也是近似的
。蹘煟菡姘,同學們能列舉生活中這么多的近似數據,說明同學們平時很留心觀察一些事物,這一點很值得肯定
2、議一議
圖3-2
。1)上面的數據,哪些是精確的?哪些是近似的?
。2)舉例說明生活中哪些數據是精確的?哪些數據是近似的?
。凵荩1)2000年第五次人口普查表明,我國人口總數為12.9533億,人口總數為12.9533億這個數據是近似數
。蹘煟轂槭裁茨?(why?)
。凵菀驗槲覈赜蜻|闊,客觀條件就決定了在人口普查的過程中是無法或難以得到精確數據的
。蹘煟莸拇_如此,在測量過程中,我們難以得到精確數據,盡管現在科技的發展,有了更為精密的儀器、在人口普查中,由于客觀條件等的限制,也難以或無法取到精確值
。凵莸诙鶊D是精確值
。凵莸谌鶊D中,年級共有97人是精確值,而買門票大約需要800元是近似值、
。蹘煟莼卮鹫_、這里的“800元”也是近似值,但這個近似值不是無法或難以得到精確數據,而是根據實際情況要估算一下大約需多少錢,無需得到精確值
你還能舉出生活中一些例子說明哪些數據是精確的'?哪些數據是近似的嗎?
。凵菪∶鞯纳砀呤1.58米,體重40公斤,年齡14歲,這些數據都是近似數
。凵菪∶鹘裉焐狭6節課,是精確的
。凵菀粭l草魚重2.854千克,這個數據也是近似數
。凵菸覀儼嘤25個女生,這個數據是精確數
。蹘煟菸覀兞私饬松钪写嬖谥@么多的近似數和精確數,下面我們來看一看如何根據具體情況和要求采用四舍五入法求一個數的近似數、
3、做一做
例1小明量得課桌長為1.025米,請按下列要求取這個數的近似數:
。1)四舍五入到百分位;
。2)四舍五入到十分位;
。3)四舍五入到個位、
。鄯治觯萦盟纳嵛迦敕ㄇ笠粋數的近似數,關鍵是看四舍五入到哪一位,看這一位后面一位的數夠五不夠五,來決定取舍,特別注意近似數1.0,末尾的0不能隨意去掉、
解:(1)四舍五入到百分位為1.03米;
。2)四舍五入到十分位為1.0米;
。3)四舍五入到個位為1米
例2小麗與小明在討論問題
小麗:如果你把7498近似到千位數,你就會得到7000
小明:不,我有另外一種解答方法,可以得到不同的答案、首先,將7498近似到百位,得到7500,接著把7500近似到千位,就得到了8000
小麗:……
你怎樣評價小麗和小明的說法呢?
。凵菪←惖恼f法是正確的因為一個數近似到千位,要一次做完,看百位上的數決定四舍五入,而不能先近似到百位,再近似到千位
例3中國國土面積約為9596960千米2,美國和羅馬尼亞的國土面積約為9364000千米2(四舍五入到千位)和240000千米2(四舍五入到萬位)如果要將中國國土面積與它們相比較,那么中國國土面積分別四舍五入到哪一位時,比較起來的誤差可能會小些?
。鄯治觯輰祿M行比較是培養數感的一個重要方面、在對數據進行比較時,有時可以根據需要選擇各自的近似數進行比較、在選擇近似數時,一般數據要四舍五入到同一數位,這樣出現較大誤差的可能性會小一些
解:當與美國的國土面積比較時,可將中國國土面積四舍五入到千位,得到9597000千米2,因為它們同時四舍五入到了千位,這樣比較起來誤差會小一些
類似地,當與羅馬尼亞國土面積相比較時,可以將中國國土面積四舍五入到萬位,得到9600000千米2、
、、課時小結
。蹘煟萃ㄟ^這節課的學習,你有何體會和收獲呢?
。凵菸覀冎懒藴y量所得的數據都是近似數
。凵萆钪屑扔芯_的數據,也有近似的數據,因此我們的生活豐富多彩、
。凵菽芨鶕唧w情況和要求求一個數的近似數
。凵萦盟纳嵛迦敕ㄈ〗茢禃r,不能隨便將小數末尾的零去掉、例如2.03取近似數,四舍五入到十分位,得到近似數2.0,不能把零去掉、
板書設計
一、生活中的數據——近似數和精確數
1、實驗測量所得的結果都是近似的(測量樹葉的長度)
2、議一議
二、根據具體情況,采用四舍五入求一個數的近似數、(師生共析,由學生板演)
七年級數學教案優秀7
一、內容和內容解析
1、內容:同底數冪的乘法。
2、內容解析
同底數冪的乘法是冪的一種運算,在整式乘法中具有基礎地位。在整式的乘法中,多項式的乘法要轉化為單項式的乘法,單項式的乘法要轉化為冪的運算,而冪的運算以同底數冪的乘法為基礎.
同底數冪的乘法將同底數冪的乘法運算轉化為指數的加法運算,其中底數a可以是具體的數、單項式、多項式、分式乃至任何代數式。同底數冪的乘法是類比數的乘方來學習的,首先在具體例子的基礎上抽象出同底數冪的乘法的性質,進而通過推理加以推導,這一過程蘊含數式通性、從具體到抽象的思想方法。
基于以上分析,確定本節課的教學重點:同底數冪的乘法的運算性質。
二、目標和目標解析
1、目標
。1)理解同底數冪的乘法,會用這一性質進行同底數冪的乘法運算。
。2)體會數式通性和從具體到抽象的思想方法在研究數學問題中的作用。
2、目標解析
達成目標(1)的標志是:學生能根據乘方的意義推導出同底數冪乘法的性質,會用符號語言和文字語言表述這一性質,會用性質進行同
底數冪的乘法運算。
達成目標(2)的標志學生發現和推導同底數冪的乘法的運算性質,會用符號語言,文字語言表述這一性質,能認識到具體例子在發現結論的過程中所起的作用,能體會到數式通性在推到結論的過程中的重要作用.
三、教學問題診斷分析
在前面的學習中,學生已經學習了用字母表示數以及整式的加減運算,但是用字母表示冪以及冪的運算還是初次接觸。冪的運算抽象程度較高,不易理解,特別對于am+n的指數的理解,因為它不僅抽象程度較高,而且運算結果反映在指數上,學生第一次接觸,也很難理解.教學時,應引導學生回顧乘方的意義,從數式通性的角度理解字母表示的冪的意義,進而明確同底數冪乘法的運算性質.
本節課的教學難點是:同底數冪的運算性質的理解與推導.
四、教學過程設計
1、創設情境,提出問題
問題1:一種電子計算機每秒可進行1014次運算,它工作103秒可進行多少次運算?
回顧與思考:什么叫乘方? an表示的意義是什么?其中a、n、an分別叫什么?
師生活動:教師提出復習問題,學生主動思考并回答問題,并嘗試用學過的知識解決問題.
設計意圖:從實際問題導入,讓學生動手試一試,主動探索,在自己
的實踐中感受學習同底數冪的乘法的必要性,并通過有步驟、有依據的計算,為探索同底數冪的乘法的運算性質做好知識和方法的鋪墊,同時因為關于底數、指數、冪等概念是在有理數的`乘法中學習的,學生可能生疏或遺忘,在新課講解之前利用這個實際問題進行復習。
2、探索新知
問題2根據乘方的意義填空:
25×22=()×()=_____________=2( ) a3×a2=()×()=______________=a()5m×5n=()×()=______________=5()
。1)探一探觀察幾個式子左右兩邊底數、指數有什么變化?
。2)說一說根據上面式子的計算結果,你能發現有什么規律嗎?小
組交流一下想法。
。3)猜一猜am×an=?(m、n是正整數)
師生活動:學生獨立思考,然后小組交流思考結果.
設計意圖:從引例到“推一推”、“說一說”、“猜一猜”是一個從特殊到一般,從具體到抽象,把冪的底數與指數分兩步又有層次地進行概括抽象的過程。在這一過程中,要留給學生探索與交流的空間,讓學生在自己的實踐中獲得運算法則。
問題3你能將你的猜想推導出來嗎?
am·an=(a·a·﹒﹒﹒·a) ·(a·a·﹒﹒﹒·a)——乘方的意義
= a·a·﹒﹒﹒·a ——乘法結合律
=am+n ——乘方的意義
師生活動:教師提出問題,學生獨立思考并寫出推導過程,教師用多媒體展示推導過程。
設計意圖:通過推導得出同底數冪的乘法的運算性質,讓學生認識并體驗數式通性,體會由具體到抽象的數學思想方法.
追問1:通過上面的探索與推導,你能用文字語言概括同底數冪乘
法的運算性質嗎?
師生活動:教師提出問題學生嘗試用文字語言概括同底數冪乘法的運
算性質:同底數冪相乘,底數不變,指數相加。
3、課堂練習鞏固同底數冪乘法的運算性質
練習1:計算題(結果寫成冪的形式)
1)103×104 =
2)(-7)3·(-7)8 =
3)a·a3 =
4)(a-b)2·(a-b) =
5)a·a3·a5 =
師生活動:學生獨立完成,小組合作交流答案。最后教師總結:在同底數冪的乘法運算中,底數可以是數、字母或式子。
設計意圖:讓學生通過練習,領會同底數冪乘法的運算性質。并體會底數的變化,可以是數、字母或式子。
問題4:a·a3·a5 =?同底數冪的乘法運算性質對于三個、四個······多個同底數冪相乘是否也適用呢?
師生活動:教師提出問題,學生思考回答問題,并將這一性質推廣到多個同底數冪相乘的情況。
設計意圖:通過利用文字語言概括性質以及對性質進行推廣的過程,促進學生對公式結構特征的深層理解。
練習2判斷題(若錯誤,請在題后寫出正確答案)
1)a5 · a5= 2a5()
2)b5 + b5 = b10()
3)x5 ·x5 = x25()
4)y5 · y5 = 2y10()
5)m · m3 = m3()
6)n + n3 = n4()
師生活動:學生思考判斷,領略“法官斷案”的快樂。
設計意圖:讓學生熟練地運用同底數冪乘法的運算性質,領略同底數冪乘法的魅力。
4、課堂小結
教師與學生一起回顧本節課所講內容以及注意事項
設計意圖:
5、布置作業
必做:課本p105頁第9題
選做:課本p106頁第13題
七年級數學教案優秀8
教學目標:
知識能力:理解有理數的概念,掌握有理數的兩種分類方法,能夠按要求對給定的有理數進行分類。
過程與方法:通過本節的學習,培養學生正確的分類討論觀點和分類能力。
情感、態度、價值觀:通過本節課的學習,體驗成功的喜悅,保持學好數學的信心。
教學重點:
掌握有理數的兩種分類方法
教學難點:
給定的數字將被填入它所屬的集合中
教學方法:
問題導向法
學習方法:
自主探究法
教學過程:
一、形勢歸納
小學我們學了整數和分數,上節課我們學了正數和負數。誰能快速提出以下問題?
1、有以下數字:15,—1/9,—5,2/15,—13/8,0.1,—5.22,—80,0,123,2.33
。1)將以上數字填入以下兩組:正整數集{}和負整數集{}。你填完了嗎?
。2)將以上數字填入以下兩個集合:整數集合{}和分數集合{}。你填完了嗎?
稱整數和分數為有理數。(指點題,板書)
二、自學指導
學生自學課本,根據課本尋找自學的機會
提綱中問題的'答案;老師先做必要的板書準備,再到學生中巡視指導,并了解掌握學生自學情況,為展示歸納作準備。
三、展示歸納
1、找有問題的學生逐題展示自學提綱中的問題答案,學生說,老師板書;
2、發動學生進行評價、補充、完善,教師根據每個題目的展示情況進行必要的講解和強調;
3、全部展示完畢后,老師對本段知識做系統梳理,關鍵點予以強調。
四、變式練習
逐題出示,先讓學生獨立完成,再請有問題的學生匯報結果,老師板書,并發動其他學生評價、補充并完善,最后老師根據需要進行重點強調。
五、總結與反思:通過本節課的學習,你有什么收獲?
六、作業:必做題:課本14頁:1、9題
【七年級數學教案優秀】相關文章:
七年級數學教案優秀08-28
七年級上冊數學教案優秀08-27
(精選)七年級上冊數學教案優秀09-27
七年級數學教案優秀(15篇)02-07
七年級上冊數學教案優秀(6篇)10-22
七年級上冊數學教案15篇【優秀】06-10
優秀的數學教案07-08
數學教案優秀11-02
優秀數學教案07-26
(優秀)大班優秀數學教案07-05