高一數學教案(15篇)
作為一位杰出的老師,就難以避免地要準備教案,教案是實施教學的主要依據,有著至關重要的作用。如何把教案做到重點突出呢?下面是小編精心整理的高一數學教案,希望對大家有所幫助。
高一數學教案1
[教學重、難點]
認識直角三角形、銳角三角形、鈍角三角形、等腰三角形和等邊三角形,體會每一類三角形的特點。
[教學準備]
學生、老師剪下附頁2中的圖2。
[教學過程]
一、畫一畫,說一說
1、學生各自借助三角板或直尺分別畫一個銳角、直角、鈍角。
2、教師巡查練習情況。
3、學生展示練習,說一說為什么是銳角、直角、鈍角?
二、分一分
1、小組活動;把附頁2中的圖2中的三角形進行分類,動手前先觀察這些三角形的特點,然后小組討論怎樣分?
2、匯報:分類的標準和方法?梢园唇莵矸,可以按邊來分。
二、按角分類:
1、觀察第一類三角形有什么共同的特點,從而歸納出三個角都是銳角的'三角形是銳角三角形。
2、觀察第二類三角形有什么共同的特點,從而歸納出有一個角是直角的三角形是直角三角形
3、觀察第三類三角形有什么共同的特點,從而歸納出有一個角是鈍角的三角形是鈍角三角形。
三、按邊分類:
1、觀察這類三角形的邊有什么共同的特點,引導學生發現每個三角形中都有兩條邊相等,這樣的'三角形叫等腰三角形,并介紹各部分的名稱。
2、引導學生發現有的三角形三條邊都相等,這樣的三角形是等邊三角形。討論等邊三角形是等腰三角形嗎?
四、填一填:
24、25頁讓學生辨認各種三角形。
五、練一練:
第1題:通過“猜三角形游戲”讓學生體會到看到一個銳角,不能決定是一個銳角三角形,必須三個角都是銳角才是銳角三角形。
第2題:在點子圖上畫三角形第3題:剪一剪。
六、完成26頁實踐活動。
高一數學教案2
教學目標:
1、理解對數的概念,能夠進行對數式與指數式的互化;
2、滲透應用意識,培養歸納思維能力和邏輯推理能力,提高數學發現能力。
教學重點:
對數的`概念
教學過程:
一、問題情境:
1、(1)莊子:一尺之棰,日取其半,萬世不竭、①取5次,還有多長?②取多少次,還有0、125尺?
。2)假設20xx年我國國民生產總值為a億元,如果每年平均增長8%,那么經過多少年國民生產總值是20xx年的2倍?
抽象出:1、=?,=0、125x=?2、=2x=?
2、問題:已知底數和冪的值,如何求指數?你能看得出來嗎?
二、學生活動:
1、討論問題,探究求法、
2、概括內容,總結對數概念、
3、研究指數與對數的關系、
三、建構數學:
1)引導學生自己總結并給出對數的概念、
2)介紹對數的表示方法,底數、真數的含義、
3)指數式與對數式的關系、
4)常用對數與自然對數、
探究:
、咆摂蹬c零沒有對數、
、,、
、菍岛愕仁剑ń滩腜58練習6)
、;②、
、葍煞N對數:
、俪S脤担;
、谧匀粚担、
。5)底數的取值范圍為;真數的取值范圍為、
四、數學運用:
1、例題:
例1、(教材P57例1)將下列指數式改寫成對數式:
。1)=16;(2)=;(3)=20;(4)=0、45、
例2、(教材P57例2)將下列對數式改寫成指數式:
。1);(2)3=—2;(3);(4)(補充)ln10=2、303
例3、(教材P57例3)求下列各式的值:
、;⑵;⑶(補充)、
2、練習:
P58(練習)1,2,3,4,5、
五、回顧小結:
本節課學習了以下內容:
、艑档亩x;
⑵指數式與對數式互換;
⑶求對數式的值(利用計算器求對數值)、
六、課外作業:P63習題1,2,3,4、
高一數學教案3
學習目標
1、掌握雙曲線的范圍、對稱性、頂點、漸近線、離心率等幾何性質
2、掌握標準方程中的幾何意義
3、能利用上述知識進行相關的論證、計算、作雙曲線的草圖以及解決簡單的實際問題
一、預習檢查
1、焦點在x軸上,虛軸長為12,離心率為的雙曲線的標準方程為、
2、頂點間的距離為6,漸近線方程為的雙曲線的標準方程為、
3、雙曲線的漸進線方程為、
4、設分別是雙曲線的半焦距和離心率,則雙曲線的一個頂點到它的一條漸近線的距離是、
二、問題探究
探究1、類比橢圓的幾何性質寫出雙曲線的幾何性質,畫出草圖并,說出它們的不同、
探究2、雙曲線與其漸近線具有怎樣的關系、
練習:已知雙曲線經過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標準方程是、
例1根據以下條件,分別求出雙曲線的標準方程、
(1)過點,離心率、
(2)、是雙曲線的左、右焦點,是雙曲線上一點,且,,離心率為、
例2已知雙曲線,直線過點,左焦點到直線的距離等于該雙曲線的虛軸長的,求雙曲線的離心率、
例3(理)求離心率為,且過點的雙曲線標準方程、
三、思維訓練
1、已知雙曲線方程為,經過它的右焦點,作一條直線,使直線與雙曲線恰好有一個交點,則設直線的.斜率是、
2、橢圓的離心率為,則雙曲線的離心率為、
3、雙曲線的漸進線方程是,則雙曲線的離心率等于=、
4、(理)設是雙曲線上一點,雙曲線的一條漸近線方程為、分別是雙曲線的左、右焦點,若,則、
四、知識鞏固
1、已知雙曲線方程為,過一點(0,1),作一直線,使與雙曲線無交點,則直線的斜率的集合是、
2、設雙曲線的一條準線與兩條漸近線交于兩點,相應的焦點為,若以為直徑的圓恰好過點,則離心率為、
3、已知雙曲線的左,右焦點分別為,點在雙曲線的右支上,且,則雙曲線的離心率的值為、
4、設雙曲線的半焦距為,直線過、兩點,且原點到直線的距離為,求雙曲線的離心率、
5、(理)雙曲線的焦距為,直線過點和,且點(1,0)到直線的距離與點(-1,0)到直線的距離之和、求雙曲線的離心率的取值范圍、
高一數學教案4
本文題目:高一數學教案:函數的奇偶性
課題:1.3.2函數的奇偶性
一、三維目標:
知識與技能:使學生理解奇函數、偶函數的概念,學會運用定義判斷函數的奇偶性。
過程與方法:通過設置問題情境培養學生判斷、推斷的能力。
情感態度與價值觀:通過繪制和展示優美的函數圖象來陶冶學生的情操. 通過組織學生分組討論,培養學生主動交流的合作精神,使學生學會認識事物的特殊性和一般性之間的關系,培養學生善于探索的'思維品質。
二、學習重、難點:
重點:函數的奇偶性的概念。
難點:函數奇偶性的判斷。
三、學法指導:
學生在獨立思考的基礎上進行合作交流,在思考、探索和交流的過程中獲得對函數奇偶性的全面的體驗和理解。對于奇偶性的應用采取講練結合的方式進行處理,使學生邊學邊練,及時鞏固。
四、知識鏈接:
1.復習在初中學習的軸對稱圖形和中心對稱圖形的定義:
2.分別畫出函數f (x) =x3與g (x) = x2的圖象,并說出圖象的對稱性。
五、學習過程:
函數的奇偶性:
(1)對于函數 ,其定義域關于原點對稱:
如果______________________________________,那么函數 為奇函數;
如果______________________________________,那么函數 為偶函數。
(2)奇函數的圖象關于__________對稱,偶函數的圖象關于_________對稱。
(3)奇函數在對稱區間的增減性 ;偶函數在對稱區間的增減性 。
六、達標訓練:
A1、判斷下列函數的奇偶性。
(1)f(x)=x4;(2)f(x)=x5;
(3)f(x)=x+ (4)f(x)=
A2、二次函數 ( )是偶函數,則b=___________ .
B3、已知 ,其中 為常數,若 ,則
_______ .
B4、若函數 是定義在R上的奇函數,則函數 的圖象關于 ( )
(A) 軸對稱 (B) 軸對稱 (C)原點對稱 (D)以上均不對
B5、如果定義在區間 上的函數 為奇函數,則 =_____ .
C6、若函數 是定義在R上的奇函數,且當 時, ,那么當
時, =_______ .
D7、設 是 上的奇函數, ,當 時, ,則 等于 ( )
(A)0.5 (B) (C)1.5 (D)
D8、定義在 上的奇函數 ,則常數 ____ , _____ .
七、學習小結:
本節主要學習了函數的奇偶性,判斷函數的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數的奇偶性時,必須注意首先判斷函數的定義域是否關于原點對稱。單調性與奇偶性的綜合應用是本節的一個難點,需要學生結合函數的圖象充分理解好單調性和奇偶性這兩個性質。
八、課后反思:
高一數學教案5
學習目標:
(1)理解函數的概念
(2)會用集合與對應語言來刻畫函數,
(3)了解構成函數的要素。
重點:
函數概念的理解
難點:
函數符號y=f(x)的理解
知識梳理:
自學課本P29—P31,填充以下空格。
1、設集合A是一個非空的實數集,對于A內 ,按照確定的對應法則f,都有 與它對應,則這種對應關系叫做集合A上的一個函數,記作 。
2、對函數 ,其中x叫做 ,x的取值范圍(數集A)叫做這個函數的 ,所有函數值的集合 叫做這個函數的 ,函數y=f(x) 也經常寫為 。
3、因為函數的值域被 完全確定,所以確定一個函數只需要
。
4、依函數定義,要檢驗兩個給定的變量之間是否存在函數關系,只要檢驗:
、 ;② 。
5、設a, b是兩個實數,且a
(1)滿足不等式 的實數x的集合叫做閉區間,記作 。
(2)滿足不等式a
(3)滿足不等式 或 的'實數x的集合叫做半開半閉區間,分別表示為 ;
分別滿足x≥a,x>a,x≤a,x
其中實數a, b表示區間的兩端點。
完成課本P33,練習A 1、2;練習B 1、2、3。
例題解析
題型一:函數的概念
例1:下圖中可表示函數y=f(x)的圖像的只可能是( )
練習:設M={x| },N={y| },給出下列四個圖像,其中能表示從集合M到集合N的函數關系的有____個。
題型二:相同函數的判斷問題
例2:已知下列四組函數:① 與y=1 ② 與y=x ③ 與
、 與 其中表示同一函數的是( )
A. ② ③ B. ② ④ C. ① ④ D. ④
練習:已知下列四組函數,表示同一函數的是( )
A. 和 B. 和
C. 和 D. 和
題型三:函數的定義域和值域問題
例3:求函數f(x)= 的定義域
練習:課本P33練習A組 4.
例4:求函數 , ,在0,1,2處的函數值和值域。
當堂檢測
1、下列各組函數中,表示同一個函數的是( A )
A、 B、
C、 D、
2、已知函數 滿足f(1)=f(2)=0,則f(-1)的值是( C )
A、5 B、-5 C、6 D、-6
3、給出下列四個命題:
、 函數就是兩個數集之間的對應關系;
、 若函數的定義域只含有一個元素,則值域也只含有一個元素;
、 因為 的函數值不隨 的變化而變化,所以 不是函數;
、 定義域和對應關系確定后,函數的值域也就確定了.
其中正確的有( B )
A. 1 個 B. 2 個 C. 3個 D. 4 個
4、下列函數完全相同的是 ( D )
A. , B. ,
C. , D. ,
5、在下列四個圖形中,不能表示函數的圖象的是 ( B )
6、設 ,則 等于 ( D )
A. B. C. 1 D.0
7、已知函數 ,求 的值.( )
高一數學教案6
一、本課數學內容的本質、地位、作用分析
普通高中課標教材必修1共安排了三章內容,第一章是《集合與函數的概念》,第二章是《基本初等函數(Ⅰ)》,第三章是《函數的應用》。第三章編排了兩塊內容,第一部分是函數與方程,第二部分是函數模型及其應用。本節課方程的根與函數的零點,正是在這種建立和運用函數模型的大背景下展開的。本節課的主要教學內容是函數零點的定義和函數零點存在的判定依據,這兩者顯然是為下節“用二分法求方程近似解”這一“函數的應用”服務的,同時也為后續學習的算法埋下伏筆。由此可見,它起著承上啟下的作用,與整章、整冊綜合成一個整體,學好本節意義重大。
函數在數學中占據著不可替代的核心地位,根本原因之一在于函數與其他知識具有廣泛的聯系,而函數的零點就是其中的一個鏈結點,它從不同的角度,將數與形,函數與方程有機地聯系在一起。方程本身就是函數的一部分,用函數的觀點來研究方程,就是將局部放入整體中研究,進而對整體和局部都有一個更深層次的理解,并學會用聯系的觀點解決問題,為后面函數與不等式和數列等其他知識的聯系奠定基礎。
二、教學目標分析
本節內容包含三大知識點:
一、函數零點的定義;
二、方程的根與函數零點的等價關系;
三、零點存在性定理。
結合本節課引入三大知識點的方法,設定本節課的知識與技能目標如下:
1.結合方程根的.幾何意義,理解函數零點的定義;
2.結合零點定義的探究,掌握方程的實根與其相應函數零點之間的等價關系;
3.結合幾類基本初等函數的圖象特征,掌握判斷函數的零點個數和所在區間的方法.
本節課是學生在學習了函數的性質,具備了初步的數形結合知識的基礎上,通過對特殊函數圖象的分析進行展開的,是培養學生“化歸與轉化思想”,“數形結合思想”,“函數與方程思想”的優質載體。
結合本節課教學主線的設計,設定本節課的過程與方法目標如下:
1.通過化歸與轉化思想的引導,培養學生從已有認知結構出發,尋求解決棘手問題方法的習慣;
2.通過數形結合思想的滲透,培養學生主動應用數學思想的意識;
3.通過習題與探究知識的相關性設置,引導學生深入探究得出判斷函數的零點個數和所在區間的方法;
4.通過對函數與方程思想的不斷剖析,促進學生對知識靈活應用的能力。
由于本節課將以教師引導,學生探究為主體形式,故設定本節課的情感、態度與價值觀目標如下:
1.讓學生體驗化歸與轉化、數形結合、函數與方程這三大數學思想在解決數學問題時的意義與價值;
2.培養學生鍥而不舍的探索精神和嚴密思考的良好學習習慣。
3.使學生感受學習、探索發現的樂趣與成功感。
三、教學問題診斷
學生具備的認知基礎:
1.基本初等函數的圖象和性質;
2.一元二次方程的根和相應函數圖象與x軸的聯系;
3.將數與形相結合轉化的意識。
學生欠缺的實際能力:
1.主動應用數形結合思想解決問題的意識還不強;
2.將未知問題已知化,將復雜問題簡單化的化歸意識淡薄;
3.從直觀到抽象的概括總結能力還不夠;
4.概念的內涵與外延的探究意識有待提高。
對本節課的教學,教材是利用一組一元二次方程和二次函數的關系來引入函數零點的。這樣處理,主要是想讓學生在原有二次函數的認知基礎上,使其知識得到自然的發生發展。理解了像二次函數這樣簡單的函數零點,再來理解其他復雜的函數零點就會容易一些。但學生對如何解一元二次方程以及二次函數的圖象早就熟練了,這樣的引入過程使學生感到平淡,激發不起他們的興趣,他們對零點的理解也只會浮于表面,也無法使其體會引入函數零點的必要性,理解不了方程根存在的本質原因是零點的存在。
教材是通過由直觀到抽象的過程,才得到判斷函數y=f(x)在(a,b)內有零點的一種條件的,如果不能有效地對該過程進行引導,容易出現學生被動接受,盲目記憶的結果,而喪失了對學生應用數學思想方法的意識進行培養的機會。
教材中零點存在性定理只表述了存在零點的條件,但對存在零點的個數并未多做說明,這就要求教師對該定理的內涵和外延要有清晰的把握,引導學生探究出只存在一個零點的條件,否則學生對定理的內容很容易心存疑慮。
四、本節課的教法特點以及預期效果分析
本節課教法的幾大特點總結如下:
1.以問題為主線貫穿始終;
2.精心設置引導性的語言放手讓學生探究;
3.注重在引導學生探究問題解法的過程中滲透數學思想;
4.在探究過程中引入新知識點,在引入新知識點后適時歸納總結,進行探究階段性成果的應用。
由于所設置的主線問題具有很高的探究價值,所以預期學生熱情會很高,積極性調動起來,那整節課才能活起來;
由于為了更好地組織學生探究所設置的引導性語言,重在去挖掘學生內心真實的想法和他們最真實體會到的困難,所以通過學生活動會更多地暴露他們在基礎知識掌握方面的缺憾,免不了要隨時糾正對過往知識的錯誤理解;
因為在探究過程中不斷滲透數學思想,學生對親身經歷的解題方法就會有更深的體會,主動應用數學思想的意識在上升,對于主線問題也應該可以迎刃而解;
因為在探究過程中引入新知識點,學生對新知識產生的必要性會有更深刻的體會和認識,同時在新知識產生后,又適時地加以應用,學生對新知識的應用能力不斷提高。
高一數學教案7
一、教學目標
1.知識與技能
。1)解二分法求解方程的近似解的思想方法,會用二分法求解具體方程的近似解;
。2)體會程序化解決問題的思想,為算法的學習作準備。
2.過程與方法
。1)讓學生在求解方程近似解的實例中感知二分發思想;
。2)讓學生歸納整理本節所學的知識。
3.情感、態度與價值觀
、袤w會二分法的程序化解決問題的思想,認識二分法的價值所在,使學生更加熱愛數學;
、谂囵B學生認真、耐心、嚴謹的數學品質。
二、 教學重點、難點
重點:用二分法求解函數f(x)的零點近似值的步驟。
難點:為何由︱a - b ︳< 便可判斷零點的近似值為a(或b)?
三、 學法與教學用具
1.想-想。
2.教學用具:計算器。
四、教學設想
。ㄒ唬、創設情景,揭示課題
提出問題:
。1)一元二次方程可以用公式求根,但是沒有公式可以用來求解放程 ㏑x+2x-6=0的根;聯系函數的零點與相應方程根的關系,能否利用函數的有關知識來求她的根呢?
。2)通過前面一節課的學習,函數f(x)=㏑x+2x-6在區間內有零點;進一步的問題是,如何找到這個零點呢?
。ǘ、研討新知
一個直觀的想法是:如果能夠將零點所在的范圍盡量的縮小,那么在一定的精確度的要求下,我們可以得到零點的近似值;為了方便,我們通過“取中點”的方法逐步縮小零點所在的范圍。
取區間(2,3)的中點2.5,用計算器算得f(2.5)≈-0.084,因為f(2.5)xf(3)<0,所以零點在區間(2.5,3)內;
再取區間(2.5,3)的中點2.75,用計算器算得f(2.75)≈0.512,因為f(2.75)xf(2.5)<0,所以零點在(2.5,2.75)內;
由于(2,3),(2.5,3),(2.5,2.75)越來越小,所以零點所在范圍確實越來越小了;重復上述步驟,那么零點所在范圍會越來越小,這樣在有限次重復相同的步驟后,在一定的精確度下,將所得到的零點所在區間上任意的一點作為零點的近似值,特別地可以將區間的端點作為零點的近似值。例如,當精確度為0.01時,由于∣2.5390625-2.53125∣=0.0078125<0.01,所以我們可以將x=2.54作為函數f(x)=㏑x+2x-6零點的近似值,也就是方程㏑x+2x-6=0近似值。
這種求零點近似值的方法叫做二分法。
1.師:引導學生仔細體會上邊的這段文字,結合課本上的相關部分,感悟其中的思想方法.
生:認真理解二分法的函數思想,并根據課本上二分法的一般步驟,探索其求法。
2.為什么由︱a - b ︳<便可判斷零點的近似值為a(或b)?
先由學生思考幾分鐘,然后作如下說明:
設函數零點為x0,則a<x0<b,則:
0<x0-a<b-a,a-b<x0-b<0;
由于︱a - b ︳<,所以
︱x0 - a ︳<b-a<,︱x0 - b ︳<∣ a-b∣<,
即a或b 作為零點x0的近似值都達到了給定的精確度。
。ㄈ、鞏固深化,發展思維
1.學生在老師引導啟發下完成下面的`例題
例2.借助計算器用二分法求方程2x+3x=7的近似解(精確到0.01)
問題:原方程的近似解和哪個函數的零點是等價的?
師:引導學生在方程右邊的常數移到左邊,把左邊的式子令為f(x),則原方程的解就是f(x)的零點。
生:借助計算機或計算器畫出函數的圖象,結合圖象確定零點所在的區間,然后利用二分法求解.
。ㄋ模、歸納整理,整體認識
在師生的互動中,讓學生了解或體會下列問題:
。1)本節我們學過哪些知識內容?
。2)你認為學習“二分法”有什么意義?
。3)在本節課的學習過程中,還有哪些不明白的地方?
。ㄎ澹、布置作業
P92習題3.1A組第四題,第五題。
高一數學教案8
各位評委、各位專家,大家好!今天,我說課的內容是人民教育出版社全日制普通高級中學教科書(必修)《數學》第一章第五節“一元二次不等式解法”。
下面從教材分析、教學目標分析、教學重難點分析、教法與學法、課堂設計、效果評價六方面進行說課。
一、教材分析
。ㄒ唬┙滩牡牡匚缓妥饔
“一元二次不等式解法”既是初中一元一次不等式解法在知識上的延伸和發展,又是本章集合知識的運用與鞏固,也為下一章函數的定義域和值域教學作鋪墊,起著鏈條的作用。同時,這部分內容較好地反映了方程、不等式、函數知識的內在聯系和相互轉化,蘊含著歸納、轉化、數形結合等豐富的數學思想方法,能較好地培養學生的觀察能力、概括能力、探究能力及創新意識。
。ǘ┙虒W內容
本節內容分2課時學習。本課時通過二次函數的圖象探索一元二次不等式的解集。通過復習“三個一次”的關系,即一次函數與一元一次方程、一元一次不等式的關系;以舊帶新尋找“三個二次”的關系,即二次函數與一元二次方程、一元二次不等式的關系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數學中的和諧美,體驗成功的樂趣。
二、教學目標分析
根據教學大綱的要求、本節教材的特點和高一學生的認知規律,本節課的教學目標確定為:
知識目標——理解“三個二次”的關系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。
能力目標——通過看圖象找解集,培養學生“從形到數”的轉化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。
情感目標——創設問題情景,激發學生觀察、分析、探求的學習激情、強化學生參與意識及主體作用。
三、重難點分析
一元二次不等式是高中數學中最基本的不等式之一,是解決許多數學問題的重要工具。本節課的重點確定為:一元二次不等式的.解法。
要把握這個重點。關鍵在于理解并掌握利用二次函數的圖象確定一元二次不等式解集的方法——圖象法,其本質就是要能利用數形結合的思想方法認識方程的解,不等式的解集與函數圖象上對應點的橫坐標的內在聯系。由于初中沒有專門研究過這類問題,高一學生比較陌生,要真正掌握有一定的難度。因此,本節課的難點確定為:“三個二次”的關系。要突破這個難點,讓學生歸納“三個一次”的關系作鋪墊。
四、教法與學法分析
。ㄒ唬⿲W法指導
教學矛盾的主要方面是學生的學。學是中心,會學是目的。因此在教學中要不斷指導學生學會學習。本節課主要是教給學生“動手畫、動眼看、動腦想、動口說、善提煉、勤鉆研”的研討式學習方法,這樣做增加了學生自主參與,合作交流的機會,教給了學生獲取知識的途徑、思考問題的方法,使學生真正成了教學的主體;只有這樣做,才能使學生“學”有新“思”,“思”有新“得”,“練”有新“獲”,學生也才會逐步感受到數學的美,會產生一種成功感,從而提高學生學習數學的興趣;也只有這樣做,課堂教學才富有時代特色,才能適應素質教育下培養“創新型”人才的需要。
。ǘ┙谭ǚ治
本節課設計的指導思想是:現代認知心理學——建構主義學習理論。
建構主義學習理論認為:應把學習看成是學生主動的建構活動,學生應與一定的知識背景即情景相聯系,在實際情景下進行學習,可以使學生利用已有知識與經驗同化和索引出當前要學習的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。
本節課采用“誘思引探教學法”。把問題作為出發點,指導學生“畫、看、說、用”。較好地探求一元二次不等式的解法。
高一數學教案9
一、指導思想:
使學生在九年義務教育數學課程的基礎上,進一步提高作為未來公民所必要的數學素養,以滿足個人發展與社會進步的需要。具體目標如下。
1。獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,了解概念、結論等產生的背景、應用,體會其中所蘊涵的數學思想和方法,以及它們在后續學習中的作用。通過不同形式的自主學習、探究活動,體驗數學發現和創造的歷程。
2。提高空間想像、抽象概括、推理論證、運算求解、數據處理等基本能力。
3。提高數學地提出、分析和解決問題(包括簡單的實際問題)的能力,數學表達和交流的能力,發展獨立獲取數學知識的'能力。
4。發展數學應用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出判斷。
5。提高學習數學的興趣,樹立學好數學的信心,形成鍥而不舍的鉆研精神和科學態度。
6。具有一定的數學視野,逐步認識數學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
二、教材特點:
我們所使用的教材是人教版《普通高中課程標準實驗教科書數學(a版)》,它在堅持我國數學教育優良傳統的前提下,認真處理繼承,借簽,發展,創新之間的關系,體現基礎性,時代性,典型性和可接受性等到,具有如下特點:
1。親和力:以生動活潑的呈現方式,激發興趣和美感,引發學習激情。
2。問題性:以恰時恰點的問題引導數學活動,培養問題意識,孕育創新精神。
3?茖W性與思想性:通過不同數學內容的聯系與啟發,強調類比,推廣,特殊化,化歸等思想方法的運用,學習數學地思考問題的方式,提高數學思維能力,培育理性精神。
4。時代性與應用性:以具有時代性和現實感的素材創設情境,加強數學活動,發展應用意識。
三、教法分析:
1。選取與內容密切相關的,典型的,豐富的和學生熟悉的素材,用生動活潑的語言,創設能夠體現數學的概念和結論,數學的思想和方法,以及數學應用的學習情境,使學生產生對數學的親切感,引發學生看個究竟的沖動,以達到培養其興趣的目的。
2。通過觀察,思考,探究等欄目,引發學生的思考和探索活動,切實改進學生的學習方式。
3。在教學中強調類比,推廣,特殊化,化歸等數學思想方法,盡可能養成其邏輯思維的習慣。
四、學情分析:
1、基本情況:12班共人,男生人,女生人;本班相對而言,數學尖子約人,中上等生約人,中等生約人,中下生約人,后進生約人。
14班共人,男生人,女生人;本班相對而言,數學尖子約人,中上等生約人,中等生約人,中下生約人,后進生約人。
2、兩個班均屬普高班,學習情況良好,但學生自覺性差,自我控制能力弱,因此在教學中需時時提醒學生,培養其自覺性。班級存在的最大問題是計算能力太差,學生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學中,重點在于培養學生的計算能力,同時要進一步提高其思維能力。同時,由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時適機補充一些內容。因此時間上可能仍然吃緊。同時,其底子薄弱,因此在教學時只能注重基礎再基礎,爭取每一堂課落實一個知識點,掌握一個知識點。
五、教學措施:
1、激發學生的學習興趣。由數學活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學生的學習信心,提高學習興趣,在主觀作用下上升和進步。
2、注意從實例出發,從感性提高到理性;注意運用對比的方法,反復比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的知識出發,啟發學生思考。
3、加強培養學生的邏輯思維能力就解決實際問題的能力,以及培養提高學生的自學能力,養成善于分析問題的習慣,進行辨證唯物主義教育。
4、抓住公式的推導和內在聯系;加強復習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的能力。
5、自始至終貫徹教學四環節,針對不同的教材內容選擇不同教法。
6、重視數學應用意識及應用能力的培養。
高一數學教案10
教學目標
1、使學生掌握指數函數的概念,圖象和性質。
(1)能根據定義判斷形如什么樣的函數是指數函數,了解對底數的限制條件的合理性,明確指數函數的定義域。
(2)能在基本性質的指導下,用列表描點法畫出指數函數的圖象,能從數形兩方面認識指數函數的性質。
(3)能利用指數函數的性質比較某些冪形數的大小,會利用指數函數的圖象畫出形如的圖象。
2、通過對指數函數的概念圖象性質的學習,培養學生觀察,分析歸納的能力,進一步體會數形結合的思想方法。
3、通過對指數函數的研究,讓學生認識到數學的應用價值,激發學生學習數學的興趣。使學生善于從現實生活中數學的發現問題,解決問題。
教學建議
教材分析
(1)指數函數是在學生系統學習了函數概念,基本掌握了函數的性質的基礎上進行研究的,它是重要的基本初等函數之一,作為常見函數,它既是函數概念及性質的第一次應用,也是今后學習對數函數的基礎,同時在生活及生產實際中有著廣泛的應用,所以指數函數應重點研究。
(2)本節的教學重點是在理解指數函數定義的基礎上掌握指數函數的`圖象和性質。難點是對底數在和時,函數值變化情況的區分。
(3)指數函數是學生完全陌生的一類函數,對于這樣的函數應怎樣進行較為系統的理論研究是學生面臨的重要問題,所以從指數函數的研究過程中得到相應的結論固然重要,但更為重要的是要了解系統研究一類函數的方法,所以在教學中要特別讓學生去體會研究的方法,以便能將其遷移到其他函數的研究。
教法建議
(1)關于指數函數的定義按照課本上說法它是一種形式定義即解析式的特征必須是的樣子,不能有一點差異,諸如等都不是指數函數。
(2)對底數的限制條件的理解與認識也是認識指數函數的重要內容。如果有可能盡量讓學生自己去研究對底數,指數都有什么限制要求,教師再給予補充或用具體例子加以說明,因為對這個條件的認識不僅關系到對指數函數的認識及性質的分類討論,還關系到后面學習對數函數中底數的認識,所以一定要真正了解它的由來。
關于指數函數圖象的繪制,雖然是用列表描點法,但在具體教學中應避免描點前的盲目列表計算,也應避免盲目的連點成線,要把表列在關鍵之處,要把點連在恰當之處,所以應在列表描點前先把函數的性質作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認識后,以此為指導再列表計算,描點得圖象。
高一數學教案11
學習是一個潛移默化、厚積薄發的過程。編輯老師編輯了高一數學教案:數列,希望對您有所幫助!
教學目標
1.使學生理解數列的概念,了解數列通項公式的意義,了解遞推公式是給出數列的一種方法,并能根據遞推公式寫出數列的前幾項.
(1)理解數列是按一定順序排成的一列數,其每一項是由其項數唯一確定的
(2)了解數列的各種表示方法,理解通項公式是數列第項與項數的關系式,能根據通項公式寫出數列的前幾項,并能根據給出的一個數列的前幾項寫出該數列的一個通項公式.
(3)已知一個數列的遞推公式及前若干項,便確定了數列,能用代入法寫出數列的前幾項.
2.通過對一列數的觀察、歸納,寫出符合條件的一個通項公式,培養學生的觀察能力和抽象概括能力.
3.通過由求的過程,培養學生嚴謹的科學態度及良好的思維習慣.
教學建議
(1)為激發學生學習數列的興趣,體會數列知識在實際生活中的作用,可由實際問題引入,從中抽象出數列要研究的問題,使學生對所要研究的內容心中有數,如書中所給的例子,還有物品堆放個數的計算等.
(2)數列中蘊含的函數思想是研究數列的指導思想,應及早引導學生發現數列與函數的關系.在教學中強調數列的項是按一定順序排列的,“次序”便是函數的自變量,相同的數組成的數列,次序不同則就是不同的數列.函數表示法有列表法、圖象法、解析式法,類似地,數列就有列舉法、圖示法、通項公式法.由于數列的自變量為正整數,于是就有可能相鄰的兩項(或幾項)有關系,從而數列就有其特殊的表示法——遞推公式法.
(3)由數列的通項公式寫出數列的前幾項是簡單的代入法,教師應精心設計例題,使這一例題為寫通項公式作一些準備,尤其是對程度差的學生,應多舉幾個例子,讓學生觀察歸納通項公式與各項的結構關系,盡量為寫通項公式提供幫助.
(4)由數列的前幾項寫出數列的.一個通項公式使學生學習中的一個難點,要幫助學生分析各項中的結構特征(整式,分式,遞增,遞減,擺動等),由學生歸納一些規律性的結論,如正負相間用來調整等.如果學生一時不能寫出通項公式,可讓學生依據前幾項的規律,猜想該數列的下一項或下幾項的值,以便尋求項與項數的關系.
(5)對每個數列都有求和問題,所以在本節課應補充數列前項和的概念,用表示的問題是重點問題,可先提出一個具體問題讓學生分析與的關系,再由特殊到一般,研究其一般規律,并給出嚴格的推理證明(強調的表達式是分段的);之后再到特殊問題的解決,舉例時要兼顧結果可合并及不可合并的情況.
(6)給出一些簡單數列的通項公式,可以求其最大項或最小項,又是函數思想與方法的體現,對程度好的學生應提出這一問題,學生運用函數知識是可以解決的
上述提供的高一數學教案:數列希望能夠符合大家的實際需要!
高一數學教案12
一、教學目標
1、理解一次函數和正比例函數的概念,以及它們之間的關系。
2、能根據所給條件寫出簡單的一次函數表達式。
二、能力目標
1、經歷一般規律的探索過程、發展學生的抽象思維能力。
2、通過由已知信息寫一次函數表達式的過程,發展學生的數學應用能力。
三、情感目標
1、通過函數與變量之間的關系的.聯系,一次函數與一次方程的聯系,發展學生的數學思維。
2、經歷利用一次函數解決實際問題的過程,發展學生的數學應用能力。
四、教學重難點
1、一次函數、正比例函數的概念及關系。
2、會根據已知信息寫出一次函數的表達式。
五、教學過程
1、新課導入
有關函數問題在我們日常生活中隨處可見,如彈簧秤有自然長度,在彈性限度內,隨著所掛物體的重量的'增加,彈簧的長度相應的會拉長,那么所掛物體的重量與彈簧的長度之間就存在某種關系,究竟是什么樣的關系,
請看:某彈簧的自然長度為3厘米,在彈性限度內,所掛物體的質量x每增加1千克、彈簧長度y增加0.5厘米。
。1)計算所掛物體的質量分別為1千克、 2千克、 3千克、 4千克、 5千克時彈簧的長度,
。2)你能寫出x與y之間的關系式嗎?
分析:當不掛物體時,彈簧長度為3厘米,當掛1千克物體時,增加0.5厘米,總長度為3.5厘米,當增加1千克物體,即所掛物體為2千克時,彈簧又增加0.5厘米,總共增加1厘米,由此可見,所掛物體每增加1千克,彈簧就伸長0.5厘米,所掛物體為x千克,彈簧就伸長0.5x厘米,則彈簧總長為原長加伸長的長度,即y=3+0.5x。
2、做一做
某輛汽車油箱中原有汽油 100升,汽車每行駛 50千克耗油 9升。你能寫出x與y之間的關系嗎?(y=1000。18x或y=100 x)
接著看下面這些函數,你能說出這些函數有什么共同的特點嗎?上面的幾個函數關系式,都是左邊是因變量,右邊是含自變量的代數式,并且自變量和因變量的指數都是一次。
3、一次函數,正比例函數的概念
若兩個變量x,y間的關系式可以表示成y=kx+b(k,b為常數k≠0)的形式,則稱y是x的一次函數(x為自變量,y為因變量)。特別地,當b=0時,稱y是x的正比例函數。
4、例題講解
例1:下列函數中,y是x的一次函數的是( )
、賧=x6;②y= ;③y= ;④y=7x
A、①②③ B、①③④ C、①②③④ D、②③④
分析:這道題考查的是一次函數的概念,特別要強調一次函數自變量與因變量的指數都是1,因而②不是一次函數,答案為B
高一數學教案13
教學目標
1、應用正弦余弦定理解斜三角形應用題的一般步驟及基本思路
(1)分析,(2)建模,(3)求解,(4)檢驗;
2、實際問題中的有關術語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時針轉到目標方向線的夾角;
(3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實際問題的常見題型有:
測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;
教學重難點
1、應用正弦余弦定理解斜三角形應用題的一般步驟及基本思路
(1)分析,(2)建模,(3)求解,(4)檢驗;
2、實際問題中的有關術語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的`角;
(2)方位角:是指從正北方向順時針轉到目標方向線的夾角;
(3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實際問題的常見題型有:
測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;
教學過程
一、知識歸納
1、應用正弦余弦定理解斜三角形應用題的一般步驟及基本思路
(1)分析,(2)建模,(3)求解,(4)檢驗;
2、實際問題中的有關術語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時針轉到目標方向線的夾角;
(3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實際問題的常見題型有:
測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;
二、例題討論
一)利用方向角構造三角形
四)測量角度問題
例4、在一個特定時段內,以點E為中心的7海里以內海域被設為警戒水域.點E正北55海里處有一個雷達觀測站A.某時刻測得一艘勻速直線行駛的船只位于點A北偏東。
高一數學教案14
教學目標
1.了解函數的單調性和奇偶性的概念,掌握有關證明和判斷的基本方法.
(1)了解并區分增函數,減函數,單調性,單調區間,奇函數,偶函數等概念.
(2)能從數和形兩個角度認識單調性和奇偶性.
(3)能借助圖象判斷一些函數的單調性,能利用定義證明某些函數的單調性;能用定義判斷某些函數的奇偶性,并能利用奇偶性簡化一些函數圖象的繪制過程.
2.通過函數單調性的證明,提高學生在代數方面的推理論證能力;通過函數奇偶性概念的形成過程,培養學生的觀察,歸納,抽象的能力,同時滲透數形結合,從特殊到一般的數學思想.
3.通過對函數單調性和奇偶性的理論研究,增學生對數學美的體驗,培養樂于求索的精神,形成科學,嚴謹的研究態度.
教學建議
一、知識結構
(1)函數單調性的概念。包括增函數、減函數的定義,單調區間的概念函數的單調性的判定方法,函數單調性與函數圖像的關系.
(2)函數奇偶性的概念。包括奇函數、偶函數的定義,函數奇偶性的判定方法,奇函數、偶函數的圖像.
二、重點難點分析
(1)本節教學的重點是函數的單調性,奇偶性概念的形成與認識.教學的難點是領悟函數單調性, 奇偶性的本質,掌握單調性的證明.
(2)函數的單調性這一性質學生在初中所學函數中曾經了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現在要求把它上升到理論的高度,用準確的數學語言去刻畫它.這種由形到數的翻譯,從直觀到抽象的轉變對高一的學生來說是比較困難的,因此要在概念的形成上重點下功夫.單調性的證明是學生在函數內容中首次接觸到的代數論證內容,學生在代數論證推理方面的能力是比較弱的,許多學生甚至還搞不清什么是代數證明,也沒有意識到它的重要性,所以單調性的證明自然就是教學中的難點.
三、教法建議
(1)函數單調性概念引入時,可以先從學生熟悉的一次函數,,二次函數.反比例函數圖象出發,回憶圖象的增減性,從這點感性認識出發,通過問題逐步向抽象的定義靠攏.如可以設計這樣的問題:圖象怎么就升上去了?可以從點的坐標的角度,也可以從自變量與函數值的關系的'角度來解釋,引導學生發現自變量與函數值的的變化規律,再把這種規律用數學語言表示出來.在這個過程中對一些關鍵的詞語(某個區間,任意,都有)的理解與必要性的認識就可以融入其中,將概念的形成與認識結合起來.
(2)函數單調性證明的步驟是嚴格規定的,要讓學生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時,讓學生明確變換的目標,到什么程度就可以斷號,在例題的選擇上應有不同的變換目標為選題的標準,以便幫助學生總結規律.
函數的奇偶性概念引入時,可設計一個課件,以的圖象為例,讓自變量互為相反數,觀察對應的函數值的變化規律,先從具體數值開始,逐漸讓在數軸上動起來,觀察任意性,再讓學生把看到的用數學表達式寫出來.經歷了這樣的過程,再得到等式時,就比較容易體會它代表的是無數多個等式,是個恒等式.關于定義域關于原點對稱的問題,也可借助課件將函數圖象進行多次改動,幫助學生發現定義域的對稱性,同時還可以借助圖象說明定義域關于原點對稱只是函數具備奇偶性的必要條件而不是充分條件.
高一數學教案15
一、教材分析
1、 教材的地位和作用:
函數是數學中最主要的概念之一,而函數概念貫穿在中學數學的始終,概念是數學的基礎,概念性強是函數理論的一個顯著特點,只有對概念作到深刻理解,才能正確靈活地加以應用。本課中對函數概念理解的程度會直接影響其它知識的學習,所以函數的第一課時非常的重要。
2、 教學目標及確立的依據:
教學目標:
(1) 教學知識目標:了解對應和映射概念、理解函數的近代定義、函數三要素,以及對函數抽象符號的理解。
(2) 能力訓練目標:通過教學培養的抽象概括能力、邏輯思維能力。
(3) 德育滲透目標:使懂得一切事物都是在不斷變化、相互聯系和相互制約的辯證唯物主義觀點。
教學目標確立的依據:
函數是數學中最主要的概念之一,而函數概念貫穿整個中學數學,如:數、式、方程、函數、排列組合、數列極限等都是以函數為中心的代數。加強函數教學可幫助學好其他的內容。而掌握好函數的概念是學好函數的基石。
3、教學重點難點及確立的依據:
教學重點:映射的概念,函數的近代概念、函數的三要素及函數符號的理解。
教學難點:映射的概念,函數近代概念,及函數符號的理解。
重點難點確立的依據:
映射的概念和函數的近代定義抽象性都比較強,要求學生的理性認識的能力也比較高,對于剛剛升入高中不久的來說不易理解。而且由于函數在高考中可以以低、中、高擋題出現,所以近年來有一種“函數熱”的趨勢,所以本節的重點難點必然落在映射的概念和函數的近代定義及函數符號的理解與運用上。
二、教材的處理:
將映射的定義及類比手法的運用作為本課突破難點的關鍵。 函數的定義,是以集合、映射的觀點給出,這與初中教材變量值與對應觀點給出不一樣了,從而給本身就很抽象的函數概念的理解帶來更大的困難。為解決這難點,主要是從實際出發調動學生的學習熱情與參與意識,運用引導對比的手法,啟發引導學生進行有目的的反復比較幾個概念的異同,使真正對函數的概念有很準確的認識。
三、教學方法和學法
教學方法:講授為主,自主預習為輔。
依據是:因為以新的觀點認識函數概念及函數符號與運用時,更重要的是必須給學生講清楚概念及注意事項,并通過師生的共同討論來幫助學生深刻理解,這樣才能使函數的概念及符號的運用在學生的思想和知識結構中打上深刻的烙印,為能學好后面的知識打下堅實的基礎。
學法:四、教學程序
一、課程導入
通過舉以下一個通俗的例子引出通過某個對應法則可以將兩個非空集合聯系在一起。
例1:把高一(12)班和高一(11)全體同學分別看成是兩個集合,問,通過“找好朋友”這個對應法則是否能將這兩個集合的某些元素聯系在一起?
二. 新課講授:
(1) 接著再通過幻燈片給出六組學生熟悉的數集的對應關系引導學生歸納它們的共同性質(一對一,多對一),進而給出映射的概念,表示符號f:a→b,及原像和像的定義。強調指出非空集合a到非空集合b的映射包括三部分即非空集合a、b和a到b的對應法則 f。進一步引導判斷一個從a到b的對應是否為映射的關鍵是看a中的任意一個元素通過對應法則f在b中是否有唯一確定的元素與之對應。
(2)鞏固練習課本52頁第八題。
此練習能讓更深刻的認識到映射可以“一對多,多對一”但不能是“一對多”。
例1. 給出學生初中學過的函數的傳統定義和幾個簡單的一次、二次函數,通過畫圖表示這些函數的`對應關系,引導發現它們是特殊的映射進而給出函數的近代定義(設a、b是兩個非空集合,如果按照某種對應法則f,使得a中的任何一個元素在集合b中都有唯一的元素與之對應則這樣的對應叫做集合a到集合b的映射,它包括非空集合a和b以及從a到b的對應法則f),并說明把函f:a→b記為y=f(x),其中自變量x的取值范圍a叫做函數的定義域,與x的值相對應的y(或f(x))值叫做函數值,函數值的集合{ f(x):x∈a}叫做函數的值域。
并把函數的近代定義與映射定義比較使認識到函數與映射的區別與聯系。(函數是非空數集到非空數集的映射)。
再以讓判斷的方式給出以下關于函數近代定義的注意事項:2. 函數是非空數集到非空數集的映射。
3. f表示對應關系,在不同的函數中f的具體含義不一樣。
4. f(x)是一個符號,不表示f與x的乘積,而表示x經過f作用后的結果。
5. 集合a中的數的任意性,集合b中數的唯一性。
66. “f:a→b”表示一個函數有三要素:法則f(是核心),定義域a(要優先),值域c(上函數值的集合且c∈b)。
三.講解例題
例1.問y=1(x∈a)是不是函數?
解:y=1可以化為y=0*x+1
畫圖可以知道從x的取值范圍到y的取值范圍的對應是“多對一”是從非空數集到非空數集的映射,所以它是函數。
[注]:引導從集合,映射的觀點認識函數的定義。
四.課時小結:
1. 映射的定義。
2. 函數的近代定義。
3. 函數的三要素及符號的正確理解和應用。
4. 函數近代定義的五大注意點。
五.課后作業及板書設計
書本p51 習題2.1的1、2寫在書上3、4、5上交。
預習函數三要素的定義域,并能求簡單函數的定義域。
函數(一)
一、映射:
2.函數近代定義: 例題練習
二、函數的定義 [注]1—5
1.函數傳統定義
三、作業:
【高一數學教案】相關文章:
高一數學教案11-27
高一數學教案11-08
高一數學教案最新08-27
高一數學教案(通用)06-29
高一數學教案(薦)03-16
高一數學教案范文11-30
高一數學教案[必備]05-25
高一數學教案(精品)10-14
[實用]高一數學教案10-30
高一數學教案模板11-08