• <i id="549yd"></i>
  • 
    
  • 現在位置:范文先生網>教案大全>數學教案>初中數學優秀教案

    初中數學優秀教案

    時間:2024-06-22 12:30:32 數學教案 我要投稿

    [熱門]初中數學優秀教案15篇

      作為一名老師,可能需要進行教案編寫工作,借助教案可以提高教學質量,收到預期的教學效果。教案應該怎么寫呢?以下是小編為大家整理的初中數學優秀教案,希望對大家有所幫助。

    [熱門]初中數學優秀教案15篇

    初中數學優秀教案1

      教學目的:

      1、在解決實際問題的過程中,進一步鞏固形如ax+b=c、ax-b=c的方程的解法,同時理解并掌握形如ax÷b=c的方程的解法,會列上述方程解決兩步計算的實際問題。

      2、提高分析數量關系的能力,培養學生思維的靈活性。

      3、在積極參與數學活動的過程中,樹立學好數學的信心。

      教學重點、難點:

      引導學生獨立分析問題,找出題目中的等量關系。

      教學對策:

      在積極參與數學活動的過程中,樹立學好數學的信心。

      教學準備:

      教學光盤

      教學過程:

      一、復習準備

      1、解方程(練習一第6題的第1、3小題)

      4x+12=50 2.3x-1.02=0.36

      學生獨立完成,再指名學生板演并講評,集體訂正。

      二、嘗試練習

      師:剛才的兩道題同學們完成得很好,這道題你們還能自己解決嗎?試試看。

      出示:30x÷2=360

      學生獨立嘗試完成,全班交流。

      指名學生說一說,解這個方程是第一步需要做什么?這樣做依據了等式的什么性質?

      三、鞏固練習

      1、出示練習一第7題。

      (1)分析數量關系

      提問:誰來說說三角形的面積公式是怎樣的?根據學生回答板書:S=ah÷2。聯系這個公式你能找出數量之間的相等關系嗎?(生獨立思考后在小組內交流)指名口答。你覺得在這些數量關系中,哪一個等量關系適合列方程?根據這個數量關系我們可以列出怎樣的方程?板書:1.3x÷2=0.39。

      第⑵題生獨立思考并列出方程,在小組內說說自己的思考過程后全班交流。板書:3x+18=19.8。

      (2)學生獨立計算,并檢驗答案是否正確,全班核對。

      小結:在一個實際問題中,可能會有幾個不同的等量關系,我們應該選擇合適的等量關系來列方程。

      2、練習一第8題。

      學生讀題后可用自己喜歡的方法將與楊樹和松樹有關的信息分別列表整理(如列表,作標記等)

      學生獨立解決后再說說數量之間有怎樣的數量關系,是根據什么樣的數量關系列出的'方程,最后核對解方程的過程。(提示學生可從得數的合理性來初步檢驗)

      3、練習一第9題。

      學生獨立思考,指名分析數量關系,教師結合學生回答畫出線段圖幫助學生理解題意。

      學生獨立解方程再集體訂正。

      4、練習一第10題。

      教師簡單介紹相關天文知識后,學生獨立解答,然后及時交流,教師及時講評。

      5、練習一第11題。

      學生讀題后教師提問:在本題中出現了兩個問題,那么我們在寫設句時要注意什么?(提示學生用不同的字母分別表示小亮出生時的身高和體重)

      學生獨立解決,集體核對。結合學生板演情況進行講評,進一步規范學生的書寫格式。

      6、練習一第12題。

      提問:你能看懂這張發票上所提供的信息嗎?數量間有怎樣的等量關系呢

      學生獨立列方程解答,同桌同學互相檢查,再集體訂正。

      7、練習一第13題。

      學生閱讀第13題,理解后獨立解決問題,再交流。

      教師再補充幾題,如:98.6、212華氏度相當于多少攝氏度等。

      四、全課小結

      說一說你這一節課的學習收獲及還有什么問題。

      五、布置作業

      完成配套習題。

      教后反思:

      本課時是一節練習課,練習目標有兩個,一是通過練習讓學生掌握形如ax+b=c和ax-b=c的方程的解法,會列方程解決兩步計算的實際問題;二是借助一些對比練習,讓學生感受方程的思想方法和價值。課前,我學習了高教導的“課前思考”,在今天的練習課中補充了兩組題目,讓學生進行對比練習。題目是這樣的:(1)果園里有桃樹60棵,比梨樹的3倍少6棵,梨樹有多少棵?(2)果園里有梨樹60棵,比桃樹的3倍少6棵,桃樹有多少棵?課堂上,我先請學生分析每一題的數量關系,然后選擇合適的方法來解答。學生們經過分析、比較,發現類似第1小題這樣的題目適合用方程解,類似第2小題這樣的題目適合用算術方法解。另一組補充的題目是:(1)王老師買了3個足球,付了200元,找回8元。每個足球多少元?(2)水果店運進5箱蘋果,賣出56千克,還剩34千克。每箱蘋果多少千克?對于這兩題,我請學生認真分析數量關系后用自己喜歡的方法來解答,而且如果是列方程的話,試著列出不同的方程;如果是用算術方法解的可以列出不同的算式。課堂上學生思維活躍,在正確分析數量關系后列出了不同的方程或算式。

      通過本節練習課,我想教師在教學中要更多地指導學生關注怎樣從一個個具體的問題情境中分析數量之間的相等關系,關注怎樣根據數量關系列出方程,從而在經歷實際問題數學化的過程中,獲得對用方程解決實際問題策略的體驗,進一步豐富學生解決問題的策略,加深學生對方程作為一種重要的數學思想方法的理解。

    初中數學優秀教案2

      一、教學目標

      知識與技能:使學生了解正數與負數是從實際需要中產生的;

      過程與方法:使學生理解正數與負數的概念,并會判斷一個數是正數還是負數,初步會用正負數表示具有相反意義的量;

      情感與態度:在負數概念的形成過程中,培養學生的觀察、歸納與概括的能力

      二、教學重點和難點

      負數的引入和意義

      三、教學過程

      創設情景,生活實例引入,觀察猜想,合作探究

     。ㄒ唬、從學生原有的認知結構提出問題

      大家知道,數學與數是分不開的,它是一門研究數的學問現在我們一起來回憶一下,小學里已經學過哪些類型的數?

      學生答后,教師指出:小學里學過的數可以分為三類:自然數(正整數)、分數和零(小數包括在分數之中),它們都是由于實際需要而產生的。

      為了表示一個人、兩只手、……,我們用到整數1,2,……

      為了表示半小時、四元八角七分、……,我們需用到分數1/2和小數4。87、……

      為了表示“沒有人”、“沒有羊”、……我們要用到0。

      但在實際生活中,還有許多量不能用上述所說的自然數,零或分數、小數表示。

     。ǘ、師生共同研究形成正負數概念

      某市某一天的最高溫度是零上5℃,最低溫度是零下5℃。要表示這兩個溫度,如果只用小學學過的'數,都記作5℃,就不能把它們區別清楚。

      它們是具有相反意義的兩個量。

      現實生活中,像這樣的相反意義的量還有很多。

      例如,珠穆朗瑪峰高于海平面8848米,吐魯番盆地低于海平面155 米,“高于”和“低于”其意義是相反的。

      又如,某倉庫昨天運進貨物 噸,今天運出貨物 噸,“運進”和“運出”,其意義是相反的。

      同學們能舉例子嗎?

      學生回答后,教師提出:怎樣區別相反意義的量才好呢?

      現在,數學中采用符號來區分,規定零上5℃記作+5℃(讀作正5℃)或5℃,把零下5℃記作—5℃(讀作負5℃)。這樣,只要在小學里學過的數前面加上“+”或“—”號,就把兩個相反意義的量筒明地表示出來了。

      讓學生用同樣的方法表示出前面例子中具有相反意義的量:

      高于海平面8848米,記作+8848米;低于海平面155米,記作—155米;

      運進綱物 噸,記作+ ;運出貨物 噸,記作— 。

      教師講解:什么叫做正數?什么叫做負數。

      強調,數0既不是正數,也不是負數,它是正、負數的界限,表示“基準”的數,零不是表示“沒有”,它表示一個實際存在的數量。并指出,正數,負數的“+”“—”的符號是表示性質相反的量,符號寫在數字前面,這種符號叫做性質符號

     。ㄈ、運用舉例 變式練習

      例1 所有的正數組成正數集合,所有的負數組成負數集合把下列各數中的正數和負數分別填在表示正數集合和負數集合的圈里:

      —11,4,8,+73,—2,7, , ,—8,12, — ;

      正數集合 負數集合

      此例由學生口答,教師板書,注意加上省略號,說明這是因為正(負)數集合中包含所有正(負)數,而我們這里只填了其中一部分。然后,指出不僅可以用圈表示集合,也可以用大括號表示集合

      課堂練習

      任意寫出6個正數與6個負數,并分別把它們填入相應的大括號里:

      正數集合:{ …},

      負數集合:{ …}

      四、課堂小結

      由于實際生活中存著許多具有相反意義的量,因此產生了正數與負數正數是大于0的數,負數就是在正數前面加上“—”號的數0既不是正數,也不是負數,0可以表示沒有,也可以表示一個實際存在的數量,如0℃

      五、作業布置

      1。北京一月份的日平均氣溫大約是零下3℃,用負數表示這個溫度

      2。在小學地理圖冊的世界地形圖上,可以看到亞洲西部地中海旁有一個死海湖,圖中標著—392,這表明死海的湖面與海平面相比的高度是怎樣的?

      3。在下列各數中,哪些是正數?哪些是負數?

      —16,0,004,+ ,— , ,25,8,—3,6,—4,9651,—0,1。

      4。如果—50元表示支出50元,那么+200元表示什么?

      5。河道中的水位比正常水位低0。2米記作—0。2米,那么比正常水位溫0。1米記作什?

      6。如果自行車車條的長度比標準長度長2毫米記作+2毫米,那么比標準長度短3毫米記作么?

      7。一物體可以左右移動,設向右為正,問:

     。1)向左移動12米應記作什么?(2)“記作8米”表明什么?

    初中數學優秀教案3

      教學目的 知識技能 使學生會用列一元二次方程的方法解決有關面積、體積方面和經濟方面的問題.

      數學思考 提高將實際問題轉化為數學問題的能力以及用數學的意識,滲透轉化的思想、方程的思想及數形結合的思想.

      解決問題 通過列一元二次方程的方法解決日常生活及生產實際中遇到的有關面積、體積方面和經濟方面的問題.

      情感態度 通過探究性學習,抓住問題的關鍵,揭示它的規律性,展示解題的簡潔性的數學美.

      教學難點 審題,從文字語言中挖掘有價值的信息.

      知識重點 會用列一元二次方程的方法解有關面積、體積方面和經濟方面的問題.

      教學過程 設計意圖

      教學過程

      問題一:列方程解應用題的一般步驟?

      師生共同回憶

      列方程解應用題的步驟:

     。1)審題;(2)設未知數;

     。3)列方程;(4)求解;

     。5)檢驗; (6)答.

      問題二:矩形的周長和面積?長方體的體積?

      問題三:如圖,某小區內有一塊長、寬比為1:2的`矩形空地,計劃在該空地上修筑兩條寬均為2m的互相垂直的小路,余下的四塊小矩形空地鋪成草坪,如果四塊草坪的面積之和為312m2,請求出原來大矩形空地的長和寬.

      教師活動:引導學生讀題,找到題目中的關鍵語句.

      學生活動:在關鍵語句中找到反映相等關系的語句,探究解決辦法.

      教師活動:用多媒體演示分析,解題方法.

      做一做

      如圖,有一塊長80cm,寬60cm的硬紙片,在四個角各剪去一個同樣的小正方形,用剩余部分做成一個底面積為1500cm2的無蓋的長方體盒子.求剪去的小正方形的邊長.

      課堂練習:將一個長方形的長縮短5cm,寬增長3cm,正好得到一個正方形.已知原長方形的面積是正方形面積的 ,求這個正方形的邊長.

      問題四:某商場銷售一種服裝,平均每天可售出20件,每件贏利40元.經市場調查發現:如果每件服裝降價1元,平均每天能多售出2件.在國慶節期間,商場決定采取降價促銷的措施,以達到減少庫存、擴大銷售量的目的.如果銷售這種服裝每天贏利1200元,那么每件服裝應降價多少元?

      學生活動:在眾多的文字中,找到關鍵語句,分析相等關系.

      教師活動:用多媒體幫助學生分析試題.提示學生檢驗解的合理性.

      課堂練習:1.經銷商以每雙21元的價格從廠家購進一批運動鞋,如果每雙鞋售價為a元,那么可以賣出這種運動鞋(350-10a)雙.物價局限定每雙鞋的售價不得超過進價的120%.如果商店要賺400元,每雙鞋的售價應定為多少元?需要賣出多少雙鞋?

      2.某商店從廠家以每件18元的價格購進一批商品,該商店可以自行定價.據市場調查,該商品的售價與銷售量的關系是:若每件售價a元,則可賣出(320-10a)件,但物價部門限定每件商品加價不能超過進貨價25 %的.如果商店計劃要獲利400元,則每件商品的售價應定為多少元?需要賣出這種商品多少件?(每件商品的利潤=售價進貨價)

      復習列方程解應用題的一般步驟.

      本題為后面解決有關面積、體積方面問題做鋪墊.

      提高學生的審題能力.使學生會解決有關面積的問題.

      解決體積問題的問題

      培養學生用數學的意識以及滲透轉化和方程的思想方法.

      強調對方程的解進行雙重檢驗.

      小結與作業

      課堂

      小結 利用一元二次方程解決實際問題時,要注意通過實際要求檢驗根的合理性,要注意審題能力的培養.

      本課

      作業 課本第43頁 習題2

      課后隨筆(課堂設計理念,實際教學效果及改進設想)

    初中數學優秀教案4

      【教學內容】

      【教學目標】

      1.掌握多邊形的內角和的計算方法,并能用內角和知識解決一些簡單的問題.

      2.經歷探索多邊形內角和計算公式的過程,體會如何探索研究問題.

      3.通過將多邊形"分割"為三角形的過程體驗,初步認識"轉化"的數學思想.

      【教學重點與教學難點】

      1.重點:多邊形的內角和公式

      2.難點:多邊形內角和的推導

      3.關鍵:.多邊形"分割"為三角形.

      【教具準備】三角板、卡紙

      【教學過程】

      一、創設情景,揭示問題

      1、在一次數學基礎知識搶答賽中,老師出了這么一個問題,一個五邊形的所有角相加等于多少度?一個學生馬上能回答,你們能嗎?

      2、教具演示:將一個五邊形沿對角線剪開,能分割成幾個三角形?

      你能說出五邊形的內角和是多少度嗎?(點題)意圖:利用搶答問題和教具演示,調動學生的學習興趣和注意力

      二、探索研究學會新知

      1、回顧舊知,引出問題:

      (1)三角形的內角和等于_________.外角和等于____________

      (2)長方形的內角和等于_____,正方形的`內角和等于__________.

      2、探索四邊形的內角和:

      (1)學生思考,同學討論交流.

     。2)學生敘述對四邊形內角和的認識(第一二組通過測量相加,第三四組通過畫對角線分成兩個三角形.)回顧三角形,正方形,長方形內角和,使學生對新問題進行思考與猜想.以四邊形的內角和作為探索多邊形的突破口。

     。3)引導學生用"分割法"探索四邊形的內角和:

      方法一:連接一條對角線,分成2個三角形:

      180°+180°=360°

      從簡單的思維方式發散學生的想象力達到"分割"問題,并讓學生發現問題,解決問題教學步驟教學內容備注方法二:在四邊形內部任取一點,與頂點連接組成4個三角形.

      180°×4-360°=360°

      3、探索多邊形內角和的問題,提出階梯式的問題:

      你能嘗試用上面的方法一求出五邊形的內角和嗎?(第一二組)

      你能嘗試用上面的方法一求出六邊形的內角和嗎?(第三,四組)那么n邊形呢?完成后填表:

      n邊形3456...n分成三角形的個數1234...n-2內角和...4、及時運用,掌握新知:

     。1)一個八邊形的內角和是_____________度

     。2)一個多邊形的內角和是720度,這個多邊形是_____邊形

     。3)一個正五邊形的每一個內角是________,那么正六邊形的每個內角是_________

      通過學生動手去用分割法求五(六)邊形的內角和,從簡單到復雜,從而歸納出n邊形的內角和

      三、點例透析

      運用新知例題:想一想:如果一個四邊形的一組對角互補,那么另一組對角有什么關系呢?

      四、應用訓練強化理解

      4、第83頁練習1和2多邊形內角和定理的應用

      五、知識回放

      課堂小結提問方式:本節課我們學習了什么?

      1多邊形內角和公式

      2多邊形內角和計算是通過轉化為三角形

      六、作業練習

      1、書面作業:

      2、課外練習:

    初中數學優秀教案5

      一、 教學目標

      1、 知識與技能目標

      掌握有理數乘法法則,能利用乘法法則正確進行有理數乘法運算。

      2、 能力與過程目標

      經歷探索、歸納有理數乘法法則的過程,發展學生觀察、歸納、猜測、驗證等能力。

      3、 情感與態度目標

      通過學生自己探索出法則,讓學生獲得成功的喜悅。

      二、 教學重點、難點

      重點:運用有理數乘法法則正確進行計算。

      難點:有理數乘法法則的探索過程,符號法則及對法則的'理解。

      三、 教學過程

      1、 創設問題情景,激發學生的求知欲望,導入新課。

      教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經放了3天,現在水深20米,問放水抗旱前水庫水深多少米?

      學生:26米。

      教師:能寫出算式嗎?學生:……

      教師:這涉及有理數乘法運算法則,正是我們今天需要討論的問題

      2、 小組探索、歸納法則

     。1)教師出示以下問題,學生以組為單位探索。

      以原點為起點,規定向東的方向為正方向,向西的方向為負方向。

     、 2 ×3

      2看作向東運動2米,×3看作向原方向運動3次。

      結果:向 運動 米

      2 ×3=

     、 -2 ×3

      -2看作向西運動2米,×3看作向原方向運動3次。

      結果:向 運動 米

      -2 ×3=

     、 2 ×(-3)

      2看作向東運動2米,×(-3)看作向反方向運動3次。

      結果:向 運動 米

      2 ×(-3)=

     、 (-2) ×(-3)

      -2看作向西運動2米,×(-3)看作向反方向運動3次。

      結果:向 運動 米

     。-2) ×(-3)=

     。2)學生歸納法則

     、俜枺涸谏鲜4個式子中,我們只看符號,有什么規律?

     。+)×(+)=( ) 同號得

     。-)×(+)=( ) 異號得

     。+)×(-)=( ) 異號得

     。-)×(-)=( ) 同號得

     、诜e的絕對值等于 。

     、廴魏螖蹬c零相乘,積仍為 。

     。3)師生共同用文字敘述有理數乘法法則。

      3、 運用法則計算,鞏固法則。

     。1)教師按課本P75 例1板書,要求學生述說每一步理由。

     。2)引導學生觀察、分析例子中兩因數的關系,得出兩個有理數互為倒數,它們的積為 。

     。3)學生做練習,教師評析。

     。4)教師引導學生做例題,讓學生說出每步法則,使之進一步熟悉法則,同時讓學生總結出多因數相乘的符號法則。

    初中數學優秀教案6

      教學目標:

      1、掌握一元二次方程的根與系數的關系并會初步應用。

      2、培養學生分析、觀察、歸納的能力和推理論證的能力。

      3、滲透由特殊到一般,再由一般到特殊的認識事物的規律。

      4、培養學生去發現規律的積極性及勇于探索的精神。

      教學重點與難點:

      重點

      根與系數的關系及其推導

      難點

      正確理解根與系數的關系。一元二次方程根與系數的關系是指一元二次方程兩根的和、兩根的積與系數的關系。

      教學過程:

      一、復習引入

      1、已知方程x2-ax-3a=0的一個根是6,則求a及另一個根的值。

      2、由上題可知一元二次方程的系數與根有著密切的關系。其實我們已學過的求根公式也反映了根與系數的關系,這種關系比較復雜,是否有更簡潔的關系?

      3、由求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的兩根為x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.觀察兩式右邊,分母相同,分子是-b+b2-4ac與-b-b2-4ac.兩根之間通過什么計算才能得到更簡潔的關系?

      二、探索新知

      解下列方程,并填寫表格:

      方程x1 x2 x1+x2 x1x2

      x2-2x=0

      x2+3x-4=0

      x2-5x+6=0

      觀察上面的表格,你能得到什么結論?

     。1)關于x的方程x2+px+q=0(p,q為常數,p2-4q≥0)的兩根x1,x2與系數p,q之間有什么關系?

     。2)關于x的方程ax2+bx+c=0(a≠0)的兩根x1,x2與系數a,b,c之間又有何關系呢?你能證明你的猜想嗎?

      解下列方程,并填寫表格:

      方程x1 x2 x1+x2 x1x2

      2x2-7x-4=0

      3x2+2x-5=0

      5x2-17x+6=0

      小結:根與系數關系:

     。1)關于x的方程x2+px+q=0(p,q為常數,p2-4q≥0)的兩根x1,x2與系數p,q的關系是:x1+x2=-p,x1x2=q(注意:根與系數關系的前提條件是根的判別式必須大于或等于零。)

     。2)形如ax2+bx+c=0(a≠0)的方程,可以先將二次項系數化為1,再利用上面的結論。

      即:對于方程ax2+bx+c=0(a≠0)

      ∵a≠0,∴x2+bax+ca=0

      ∴x1+x2=-ba,x1x2=ca

     。ǹ梢岳们蟾浇o出證明)

      例1不解方程,寫出下列方程的.兩根和與兩根積:

      (1)x2-3x-1=0   (2)2x2+3x-5=0

      (3)13x2-2x=0 (4)2x2+6x=3

      (5)x2-1=0 (6)x2-2x+1=0

      例2不解方程,檢驗下列方程的解是否正確?

      (1)x2-22x+1=0 (x1=2+1,x2=2-1)

      (2)2x2-3x-8=0 (x1=7+734,x2=5-734)

      例3已知一元二次方程的兩個根是-1和2,請你寫出一個符合條件的方程。(你有幾種方法?)

      例4已知方程2x2+kx-9=0的一個根是-3,求另一根及k的值。

      變式一:已知方程x2-2kx-9=0的兩根互為相反數,求k;

      變式二:已知方程2x2-5x+k=0的兩根互為倒數,求k.

      三、課堂小結

      1、根與系數的關系。

      2、根與系數關系使用的前提是:(1)是一元二次方程;(2)判別式大于等于零。

      四、作業布置

      1、不解方程,寫出下列方程的兩根和與兩根積。

      (1)x2-5x-3=0 (2)9x+2=x2 (3)6x2-3x+2=0

      (4)3x2+x+1=0

      2、已知方程x2-3x+m=0的一個根為1,求另一根及m的值。

      3、已知方程x2+bx+6=0的一個根為-2,求另一根及b的值

    初中數學優秀教案7

      4.2.(一)

      教材分析:

      本節課是緊接《平行四邊形的性質》一節,其探究的主要內容是“兩條對角線互相平分的四邊形是平行四邊形”,以及“一組對邊平行且相等的四邊形是平行四邊形”這兩種判別方法。它是在學生掌握了平行線、三角形全等及簡單圖形的平移和旋轉、平行四邊形的定義、性質等基礎性知識上學習的。在教學內容上起著承上啟下的作用。首先,在探索方式上運用了學習機“圖形計算器”的度量、旋轉、平移等方法、其次、在探究判別條件的合理性上和運用判別條件時除用到了全等三角形的相關知識,還可以通過直觀體驗的方法來獲取信息。其次,平行四邊形的判別條件是研究特殊的平行四邊形的基礎;再有,平行四邊形判別條件的探究模式從方法上為)(研究特殊的平行四邊形奠定了基礎。并且,本節內容還是學生運用化歸思想的良好素材。教材從學生年齡特征、文化知識的實際水平出發,先讓學生動手做,動腦思考,然后與同伴交流、利用學習機“圖形計算器”探索、總結歸納,升華得出平行四邊形的判別方法,再用這些方法去對四邊形是否是平行四邊形進行判別。這樣的安排使抽象的推理讓學生更易于接受,并能在整個教學過程中真正享受到探索的樂趣。

      教學目標:

      1.經歷并了解平行四邊形判別方法的探索過程,使學生逐步掌握說理的基本方法。

      探索并掌握平行四邊形的兩種判別條件,能根據判別方法進行相關的應用。

      2.在探索過程中發展學生的合理推理意識、主動探究的習慣。

      體驗數學活動來源于生活又服務于生活,提高學生的學習興趣。

      3.在操作學習機的“圖形計算器”活動過程中,加深師生的情感。培養學生的觀察能力,并提高學生的學習興趣。在學習過程中,來體會平行四邊形的圖形美和內在美。同時使“圖形計算器”真正成為學生的學具。

      教學重點:探索并掌握平行四邊形的判別條件。(一組對邊平行且相等的四邊形是平行四邊形;兩條對角線互相平分的四邊形是平行四邊形)。

      教學難點:經歷平行四邊形判別條件的探索過程,發展學生的合情推理意識、主動探索的習慣,逐步掌握說理的基本方法。

      教學媒體設計:

      為了實現教學目標、優化教學過程、突破教學難點、充分調動學生的各種感官、吸引注意力,課堂上主要采用諾亞舟學習機的“圖形計算器”進行輔助教學,通過大屏幕媒體展示教學和學生對“圖形計算器”充分利用,使教學過程與知識發展過程和思維過程三者同步,分別在創設情境;觀察、探索;理順、歸納;運用、提高;回顧、反思;布置作業環節都將發揮“圖形計算器”的實戰功能、讓學生真正做到課上聽懂、理解透徹。將學生的課堂練習成果進行快速展示,從而節約時間,提高課堂效率。

      教學過程設計:(t—教師,s—學生)

      問題與情境師生行為設計意圖

      活動板塊1

      前面我們已經學習了平行四邊形概念和性質,我們來復習:

     。1)平行四邊形概念。

     。2)平行四邊形性質。

     。3)如果我們自己作平行四邊形,你是如何說明理由的?

      進而得出需進行平行四邊形判別條件的探究。

      先由學生根據自主做圖的基礎上,進行猜想,具備什么條件的四邊形是平行四邊形,將猜想記錄到練習本上。利用學習機的“圖形計算器”將你的猜想進行驗證。

      活動板塊2

      在學生合作探究基礎上,對小組活動及時評價、引導。

      同時觀察是否有小組已經經過猜想、通過實驗驗證的方法獲得了平行四邊形判別條件。

      適時地將學生的探究方向指引到通過平行四邊形的性質來反向探究平行四邊形判別條件,進而得出平行四邊形判別方法。

      適時地選出一小組成員在臺前利用教師學習機的“圖形計算器”通過大屏幕演示小組成果…

      得出平行四邊形判別方法:兩條對角線互相平分的四邊形是平行四邊形或(一組對邊平行且相等的四邊形是平行四邊形)。

      活動板塊3

      學生繼續活動,探究平行四邊形判別的其他方法。

      適時地將學生的探究方向指引到通過平行四邊形的性質來反向探究平行四邊形判別條件,進而得出平行四邊形判別方法。

      適時地選出一小組成員在臺前利用教師學習機的“圖形計算器”通過大屏幕演示小組成果…

      得出平行四邊形判別方法:兩條對角線互相平分的四邊形是平行四邊形或(一組對邊平行且相等的四邊形是平行四邊形)。

      活動板塊4

      通過小結后,借助大屏幕展示學習機的“圖形計算器”中預先保存的練習題。

      活動板塊5

      小結及學生談感受、體會、特別是對學習機的使用情況談體會和認識。

      活動板塊6

      課后思考題:(將問題的探究記錄在學習機的“圖形計算器”中保存)

      1.平行四邊形abcd中,在對角線所在直線上取ae、cf,使ae=cf,連接be、df,試說明:be=df。

      2.利用學習機的“圖形計算器”制作一組以平行四邊形為基本圖案的美麗圖形。

      t:提出復習概念和性質。

      s:思考,回答結合一起

      復習。

      s:思考、作圖、自主參與交流。

      t:引導、合作,對小組活動及時評價。

      t:注意s猜想、驗證過程中出現哪些問題,他們想如何解決所遇到的問題。

      t:引導發展s的探究意識和合作中團結解決所遇到的各種問題。

      t:引導和補充。關注學生是否交流方法,互動學習。能否發現問題,研究并解決問題

      s:互動學習,提出論證方法。

      t:引導、合作,對回答問題及時評價。

      s:通過對學具學習機的“圖形計算器”的自主探求,獲得平行四邊形判別方法。

      s:小組成員合作,其他學生觀察、思考得出探究的正確方向。

      s:互動學習,提出論證方法。

      t:引導、合作,對回答問題及時評價。

      t:關注學生是否交流方法,互動學習。能否發現問題,研究并解決問題

      s:小組成員合作,其他學生觀察、思考得出探究的.正確方向。

      t:根據授課情況,板演解題過程,或學生口述解題過程。s:板演或口述。

      t:演示引例,解決具體問題中感受應用的價值。

      s:暢所欲言

      t:進行補充,總結。

      s:小組一名同學記錄問題題干,另一名同學在學習機的“圖形計算器”上記錄下圖形。課后將問題的探究記錄在學習機的“圖形計算器”中保存

      立足于舊知識的基礎上,引導學生的注意力。

      在情境引入中充分使用學習機“圖形計算器”來促進學生學習過程。

      為全體學生提供借助“圖形計算器”為基礎平臺,使全體學生都有信心學習數學知識,調動學生積極性,主動地參與到課程過程中來,樹立學習的信心。為教學目標1服務。

      通過全體學生借助“圖形計算器”,獲得直觀的平行四邊形判別方法的印象,通過小組間的合作探究,更容易將所獲得的信息結論加以認識、記憶。

      學生在學習過程中,對學習機的“圖形計算器”的自主發現時,大膽創新,想解決問題。教師起引導者作用,引入符號語言,使學生輕松愉悅地接受并獲取經驗為今后學習特殊四邊形打基礎。達成目標1。

      直覺思維能力是數學注意培養發展的能力之一,它有利于人的探究能力的成長和創新精神培養。

      提引問題時教師起組織者作用,使學生感受師生合作、生生合作的愉快,不斷的對學具學習機的“圖形計算器”的自主探求,獲得數學發展,激發學生的學習熱情,調動學生學習自主性。共同發展,達成目標1.2。

      在學生最近的知識發展區建立新的生長點,解釋應用與拓展的學習主題,在本活動中得以體現。達成教學目標2。

      創設一個平等和諧的暢談空間,調動學生的積極性,養成良好的總結習慣,善于從能力,情感、態度等方面關注學生對課堂整體感受,發現集體的力量是無窮的,培養集體主義精神。提供一發展平臺,給學生留有學習探索的空間。

      展示提出問題,為下節課的學習提出預想。并利用“圖形計算器”探求問題,帶來直觀體驗,同時培養學生的觀察能力,并提高學生的學習興趣。

    初中數學優秀教案8

      ●教學目標

     。ㄒ唬┙虒W知識點

      1.掌握極差、方差、標準差的概念.

      2.明白極差、方差、標準差是反映一組數據穩定性大小的.

      3.用計算器(或計算機)計算一 組數據的標準差與方差.

     。ǘ┠芰τ柧氁

      1.經歷對數據處理的過程,發展學生初步的統計意識和數據處理能力.

      2.根據極差、方差、標準差的大小,解決問題,培養學生解決問題的能力.

     。ㄈ┣楦信c價值觀要求

      1.通過解決現實情境中問題,增強數學素養,用數 學的眼光看世界.

      2.通過小組活動,培養學生的合作意識和能力.

      ●教學重點

      1.掌握極差、方差或標準差的概念,明白極差、方差、標準差是刻畫數量離散程度的幾個統計量.

      2.會求一組數據的極差、方差、標準差,并會判斷這組數據的穩定性 .

      ●教學難點

      理解方差、標準差的概念,會求一組數據的方差、標準差.

      ●教學方法

      啟發引導法

      ●教學過程

     、.創設現實問題情景,引入新課

     。蹘煟菰谛畔⒓夹g不斷發展的社會里,人們需要對大量紛繁復雜的信息作出恰當的選擇與判斷.

      當我們為加入“WTO”而欣喜若狂的時刻,為了提高農副產品的國際競爭力,一些行業協會對農副產品的規格進行了劃分.某外貿公司要出口 一批規格為75 g的雞腿.現有2個廠家提供貨源.

     。凵荩1)根據20只雞腿在圖中的分布情況,可知甲、乙兩廠被抽取雞腿的平均質量分別為75 g.

     。2)設甲、乙兩廠被抽取的雞腿的平均質量 甲, 乙,根據給出的數據,得

      甲=75+ [ 0-1-1+ 1-2+1+0+2+2-1-1+0+0+1-2+1-2+3+2-3]=75+ ×0=75(g)

      乙=75+ [0+3-3+2-1+0-2+4-3+ 0+5-4+1+2-2+3-4+1-2+0]=75+ ×0=75(g)

     。3) 從甲廠抽取的這20只雞腿質量的最大值是78 g,最小值是72 g,它們相差78-72=6 g;從乙廠抽取的這20只雞腿質量的最大值是80 g,最小值是71 g,它們相差80-71=9(g).

     。4)如果只考慮雞腿的規格,我認為外貿公司應購買甲廠的雞腿,因為甲廠雞腿規格比較穩定,在75 g左右擺動幅度較小.

     。蹘煟莺芎.在我們的實際生活中,會出現上面的`情況,平均值一樣,這里我們也關心數據與平均值的離散程度 .也就是說,這種情況下,人們除了關心數據的“平均值”即“平均水平”外,人們往往還關注數據的離散程度,即相對于“平均水平”的偏離情況.

      從上圖也能很直觀地觀察出:甲廠相對于“平均水平”的偏離程度比乙廠相對于“平均水平” 的偏離程度小.

      這節課我們就來學習關于數據的離散程度的幾個量.

     、颍v授新課

     。蹘煟菰谏厦鎺讉問題中,你認為哪一個數值是反映數據的離散程度的一個量呢?

     。凵菸艺J為最大值與最小值的差是反映數據離 散程度的一個量.

     。蹘煟莺苷_.我們把一組數據中最大數據與 最小數據的差叫極差.而極差是刻畫數據離散程度的一個統計量.

     。凵荩1)丙廠這20只雞腿質量的平均數:

      丙= [75×2+74×4+73×2+72×3+76×3+77×3+78×2+79]=75.1(g)

      極差為:79-72=7(g)

     。凵菰诘冢2)問中,我認為可以用丙廠這20只雞腿的質量與其平均數的差的和來刻畫這20只雞腿的質量與其平均數的差距.

      甲廠20只雞 腿的質量與相應的平均數的差距為:

     。75-75)+(74-75)+(74-75)+(76-75)+(73-75)+(76-75)+(75-75)+(77-75)+(77-75)+(74-75)+(74-75)+(75-75)+(75-75)+(76-75)+ (73-75)+(76-75)+(73-75)+(78-75)+(77-75)+(72-75)

      =0-1-1+1-2+1+0+2+2-1-1+0 +0+1-2+1-2+3+2-3=0;

      丙廠20只雞腿的質量與相應的平均數的差距為:

     。75-75.1)+(75-75.1)+(74- 75.1)+(74-75.1)+(74-75.1)+(74-75.1)+(73-75.1)+(73-75.1)+(72-75.1)+(72-75.1)+(72-75.1)+(76-75.1)+(76-75.1)+(76-75.1)+(77-75.1) +(77-75.1)+(77-75.1)+(78-75.1)+(78-75.1)+(79-75.1)=0

      由此可知不能用各數據與平均數的差的和來衡量這組數據 的波動大小.

      數學上,數據的離散程度還可以用方差或標準差來刻畫.

      其中方差是各個數據與平均數之差的平方的平均數,即

      s2= [(x1- )2+(x2- )2+…+(xn- )2]

      其中 是x1,x2,…,xn的平均數,s2是 方差,而標準差就是方差的算術平方根.

     。凵轂槭裁捶讲罡拍钪幸詳祿䝼數呢?

     。蹘煟菔菫榱讼龜祿䝼數的印象.

      由此我們知道:一般而言,一組數據的極差、方差或標準差越小,這組數據就越穩定.

     。凵輼O差還比較容易算出.而方差、標準差算起來就麻煩多了.

     。蹘煟菸覀兛梢允褂糜嬎闫,它可以很方便地計算出一組數據的標準差與方差,其大體步驟是 ;進入統計計算狀態,輸入數據,按鍵就可得出標準差.

      同學們可在自己的計算器上探 索計算標準差的具體操作

      計算器一般不具有求方差的功能,可以先求出標準差,再平方即可求出方差.

     。凵輘甲2= [02+1+1+1+4+1+0+4+4+1+1+1+4+1+4+9+4+9]= ×50= =2.5;

      s丙2= [0.12+0.12+1.12×4+2.12×2+3.12×3+0.92×3+1.92×3+2.92×2+3.9]= ×76 .49=3.82.

      因為s甲2<s丙2.

      所以根據計算的結果,我認為甲廠的產品更符合要求.

     、.隨堂練習

     、.課時小結

      這節課 ,我們著重學習:對于一組數據,有時只知道它的平均數還不夠,還需要知道它的波動大;描述一組數據的波動大小的量不止一種,最常用的極差、方差、標準差;方差 和標準差既有聯系 ,也有區別.

     、酰n后作業

     、.活動與探究

      甲、乙兩名學生進行射擊練習,兩人在相同條件下各射靶10次,將射擊結果作統計分析如下:

     。1)請你填上表中乙學生的相關數據;

     。2)根據你所學的統計數知識,利用上述某些數據評價甲、乙兩人的射擊水平.

    初中數學優秀教案9

      一、 教材內容及設置依據

      【教材內容】本節教材的主要內容是通過對有理數加法、減法的運算的回顧,學習包括分數和小數的有理數的加減混合運算,理解其方法;應用有理數的加減混合運算,解決實際問題。

      【設置依據】教材內容的確定主要根據知識的社會作用性、教育性原則(對培養學生的數學思維、數學能力,以及形成辨證唯物主義世界觀的重要作用)、后繼教育原則(為進一步深造、參加實際工作和適應日常生活準備條件)、可接受性原則(即考慮學生的認識水平、接受能力、生理心理特征,又要著眼于學生的不斷發展);還要與現實生活、科技發展相適應,逐步深透現代教學思想。

      二、教材的地位和作用

      本節內容是在學習了有理數的加法、有理數的減法的基礎上學習的,是前面知識的延伸和加強,同時又是后面所要學習的有理數的乘法、除法及有理數的混合運算的基礎,

      特別是減法可以轉化為加法為后面的除法可以轉化為乘法的學習提供了

      類比依據。也為后面學習代數式的合并同類項及有關的恒等變形奠定了基礎,因此具有承上啟下的重要作用。

      三、對重點、難點的處理

      【對重點的處理】本節的重點是有理數加減混合運算的方法及在實際生活中的應用。為了突出重點,教師應盡量從實際問題引入、應盡可能的在課堂上創設具體教學情境,注重使學生在具體情境中體會運算的方法。同時我們也可以根據學生的接受情況和每節課的具體情況,盡可能的把每節課的“課堂練習”和“習題”的內容劃分成不同的板塊,如:1、知識鞏固型 2、實際應用型 3、方法多變型 4、知識拓展型等。

      【對難點的處理】對于難點的處理,因為新教材“強調要給學生足夠的空間和時間”,因此教學時我們應盡量從學生已有的生活經驗和已有的知識經驗出發,或用“已知”去解決“未知”的思想引導學生,鼓勵學生大膽的猜測、交流,充分的探索。同時淡化形式,突出實質(不出現代數和的定義,只是讓學生理解有理數的加減運算可以統一成加法以及加法運算可以寫成省略括號及前面加號的形式,重點是讓學生通過具體情境對“代數和”加以體會)

      四、關于教學方法的選用

      根據本節課的內容和學生的實際水平,本節課可采用的方法:

      1、情境體驗:通過教師創設貼近學生生活實際的教學情境,讓學生融會到課堂中去,產生共鳴,激發興趣,鼓勵學生觀察、分析、探索,加深其對本節內容的理解,培養學生解決問題的能力。

      2 、引導發現法:它符合辯證唯物主義中內因與外因相互作用的觀點,符合教學論中的自覺性和積極性、鞏固性、可接受性、教學與發展相結合、教師的主導作用與學生的主體地位相統一等原則。引導發現法的關鍵是通過教師的.引導啟發,充分調動學生學習的主動性。

      3、小組合作、探究討論:通過合作討論,使學生形成一個“學習共同體”,在這個共同體內相互交流、相互溝通、相互啟發、相互補充,分享彼此的思考、經驗和知識,交流彼此的情感、體驗和觀念,共同體驗成功的喜悅,使學生體會到集體的力量,形成合作的意識,產生合作的愿望。

      五、關于學法的指導

      “授人以魚,不如授人以漁”,在教給學生知識的同時,要教給他們好的學習方法,讓他們“會學習”在本節課的教學中,在提出問題后,要鼓勵學生分析、探索、討論,確定出問題解決的辦法。通過小組探究交流,得到解決問題的不同方法,開拓了思路,培養了思維能力。同時意識到:數學是生活實際中的數學、大自然中的數學,萌生了用數學解決實際問題的意識、愿望。

      六、課時安排:1課時

      教學程序:

      一、復習鋪墊:

      首先利用多媒體出示一組有關有理數的加法、減法的題目,讓學生進行速算比賽,看誰做的又對又快。

      1、45+(-23) 2、9-(-5)

      3、-28-(-37)4、(-13 )+0

      5、(-29)+(-31) 6、(-16)-(-12)-24-(-18) 7、1.6-(-1.2)-2.5 8、(-42)+57+(-84)+(-23)

      從四排學生中個推選一名學生代表板演6、7、8、題。

      通過比賽的方式,符合學生的心理特點,迎合了學生好勝的心理,激起了學生學習的內在動力,激發了學習的興趣。

      然后教師與學生一起對題目進行評判,對優勝的學生進行表揚,對其他學生加以鼓勵,使他們意識到“勝敗乃兵家常事”,關鍵要有信心,要有高昂的斗志。通過練習,學生已在不知不覺中復習了有理數的加法、減法法則,特別是減法法則,加深了印象,這符合教學論中的鞏固性原則,為后面學習有理數的加減混合運算奠定了基礎。

      二、新知探索:

      1、 出示引例1: 一架飛機作特技表演,起飛后的高度變化如下表: 高度變化 記作

      上升4.5千米 +4.5千米

      下降3.2千米 -3.2千米

      上升1.1千米 +1.1千米

      下降1.4千米 -1.4千米

      此時飛機比起飛點高了多少米?

      讓學生分組探究討論,讓學生發表自己的見解,不難得出兩種算法:

     、 4.5+(-3.2)+1.1+(-1.4) ②4.5-3.2+1.1-1.4

     。1.3+1.1+(-1.4) =1.3+1.1-1.4

     。2.4+(-1.4) =2.4-1.4

     。1千米 =1千米

      教師隨之提出問題:比較以上兩種算法,你發現了什么?通過學生的合作討論、教師的引導、規納、總結可得出:加減法混合運算可以統一成加法;加法運算可以寫成省略括號及前面加號的形式。使學生在解決問題的過程中體會到“代數和“的含義。這里不要求出現“代數和”的名稱。通過小組合作,探究討論,讓每一個學

    初中數學優秀教案10

      一、課題引入

      為了讓學生更好地理解正數與負數的概念,作為教師有必要了解數系的發展.從數系的發展歷程來看,微積分的基礎是實數理論,實數的基礎是有理數,而有理數的基礎則是自然數.自然數為數學結構提供了堅實的基礎.

      對于“數的發展”(也即“數的擴充”),有著兩種不同的認知體系.一是數的自然擴充過程,如圖1所示,即數系發展的自然的、歷史的體系,它反映了人類對數的認識的歷史發展進程;另一是數的邏輯擴充過程,如圖2所示,即數系發展所經歷的理論的、邏輯的體系,它是策墨羅、馮諾伊曼、皮亞諾、高斯等數學家構造的一種邏輯體系,其中綜合反映了現代數學中許多思想方法.

      二、課題研究

      在實際生活中,存在著諸如上升5m,下降5m;收入5000元,支出5000元等各種具體的數量.這些數量不僅與5、5000等數量有關,而且還含有上升與下降、收入與支出等實際的意義.顯然上升5m與下降5m,收入5000元與支出5000元的實際意義是不同的.

      為了準確表達諸如此類的一些具有相反意義的量,僅用小學學過的正整數、正分數、零,是不夠的.如果把收入5000元記作5000元,那么支出5000元顯然是不可以也同樣記作5000元的.收入與支出是“意義相反”的兩回事,是不能用同一個數來表達的.因此,為了準確表達支出5000元,就有必要引入了一種新數—負數.

      我們把所學過的大于零的.數,都稱為正數;而且還可以在正數的前面添加一個“+”號,比如在5的前面添加一個“+”號就成了“+5”,把“+5”稱為一個正數,讀作“正5”.

      在正數的前面添加一個“-”號,比如在5的前面添加一個“-”號,就成了“-5”,所有按這種形式構成的數統稱為負數.“-5”讀作“負5”,“-5000”讀作“負5000”.

      于是“收入5000元”可以記作“5000元”,也可以記作“+5000元”,同時“支出5000元”就可以記作“-5000元”了.這樣具有相反意義的兩個數量就有了不同的表達方式.

      利用正數與負數可以準確地表達或記錄諸如上升與下降、收入與支出、海平面以上與海平面以下、零上與零下等一些“具有相反意義的量”.再如,某個機器零件的實際尺寸比設計尺寸大0.5mm就可以表示成“0.5mm”,或“+0.5mm”;如果“另一個機器零件的實際尺寸比設計尺寸小0.5mm”,那么就可以表示成“-0.5mm”了.在一次足球比賽中,如果甲隊贏了乙隊2個球,那么可以把甲隊的凈勝球數記作“+2”,把乙隊的凈勝球數記作“-2”.

      借助實際例子能夠讓學生較好地理解為什么要引入負數,認識到負數是為了有效表達與實際生活相關的一些數量而引入的一種新數,而不是人為地“硬造”出來的一種“新數”.

      三、鞏固練習

      例1博然的父母6月共收入4800元,可以將這筆收入記作+4800元;由于天氣炎熱,博然家用其中的1600元錢買了一臺空調,又該怎樣記錄這筆支出呢?

      思路分析:“收入”與“支出”是一對“具有相反意義的量”,可以用正數或負數來表示.一般來說,把“收入4800元”記作+4800元,而把與之具有相反意義的量“支出1600元”記作-1600元.

      特別提醒:通常具有“增加、上升、零上、海平面以上、盈余、上漲、超出”等意義的數量,都用正數來表示;而與之相對的、具有“減少、下降、零下、海平面以下、虧損、下跌、不足”等意義的數量則用負數來表示.

      再如,若游泳池的水位比正常水位高5cm,則可以將這時游泳池的水位記作+5cm;若游泳池的水位比正常的水位低3cm,則可以將這時游泳池的水位記作-3cm;若游泳池的水位正好處于正常水位的位置,則將其水位記作0cm.

      例2周一證券交易市場開盤時,某支股票的開盤價為18.18元,收盤時下跌了2.11元;周二到周五開盤時的價格與前一天收盤價相比的漲跌情況及當天的收盤價與開盤價的漲跌情況如下表:單位:元

      日期周二周三周四周五

      開盤+0.16+0.25+0.78+2.12

      收盤-0.23-1.32-0.67-0.65

      當日收盤價

      試在表中填寫周二到周五該股票的收盤價.

      思路分析:以周二為例,表中數據“+0.16”所表示的實際意義是“周二該股票的開盤價比周一的收盤價高出了0.16元”;而表中數據“-0.23”則表示“周二該股票收盤時的收盤價比當天的開盤價降低了0.23元”.

      因此,這五天該股票的開盤價與收盤價分別應該按如下的方式進行計算:

      周一該股票的收盤價是18.18-2.11=16.07元;周二該股票的收盤價為16.07+0.16-0.23=16.00元;周三該股票的收盤價為16.00+0.25-1.32=14.93元;周四的該股票的收盤價為14.93+0.78-0.67=15.04元;周五該股票的收盤價為15.04+2.12-0.65=16.51元.

      例3甲、乙、丙三支球隊以主客場的形式進行雙循環比賽,每兩隊之間都比賽兩場,下表是這三支球隊的比賽成績,其中左欄表示主隊,上行表示客隊,比分中前后兩數分別是主客隊的進球數,例如3∶2表示主隊進3球客隊進2球.

    初中數學優秀教案11

      教學目標:

      1、初步理解垂直與平行是同一平面內兩直線的特殊位置關系,初步認識垂線和平行線。

      2、在“演示操作驗證解釋應用”的過程中,發展學生的空間觀念,滲透猜想、與驗證的數學思想方法。

      教學重點、難點

      正確理解“相交”、“互相平行”、“互相垂直”等概念,發展學生的空間想象力。

      教學過程:

      一、平面內兩直線位置關系

      1、操作:

      請每位同學在一張紙上畫兩條直線,這兩條直線的位置關系會出現哪些情況?

      2、分類:根據學生想象,出示下圖(網格):

      師:老師課前也繪制了這樣6幅圖,想一想,按兩條直線的不同位置關系,你可以分成哪幾類?說說你的分類依據。

      3、討論交流,揭示平面內兩條直線的位置關系。

      小結:

      兩條直線,除了“相交”和“不相交”,還可能存在其他的位置關系嗎?

      板書:

      相交

      兩條直線的位置關系

      不相交

      二、探究一:垂直

      1、平面內兩直線相交構成的4個角的特點。

      師:首先來研究平面內兩條直線“相交”這一情況。

      師:平面內直線a和直線b相交與點O,已知1=60,誰能馬上求出2、3、4的度數?你是怎么想的?

      2、平面內兩直線相交的特殊情況。

      提問:這4個角的度數有什么特點?固定點O,旋轉后,情況還是一樣嗎?

     。ㄐD至垂直)

      師:現在兩條直線相交成直角了。繼續旋轉呢?

      除了相交成直角以外,其余的情況,都是任意相交的`。

      板書: 任意相交

      相交

      平面內兩條直線的位置關系 相交成直角

      不相交

      3、練習:

      下列圖形中哪兩條直線相交成直角。

      ○1 ○2 ○3

      4、揭示概念。(媒體出示)

      板書: 任意相交

      相交

      平面內兩條直線的位置關系 相交成直角 垂直

      不相交

      5、平面圖形中的垂直現象。

      下面圖形中哪些角是直角?在圖上用直角記號標出。哪些線段互相垂直?用垂直符號表示。

      ○1 ○2 ○3

      記作: 記作: 記作:

      6、動手操作。

      三、探究二:平行

      1、提問:長方形中,如果把相對的兩條邊無限延長,是否會在某一點相交?

      2、揭示概念

      板書: 任意相交

      相交

      平面內兩條直線的位置關系 相交成直角 垂直

      不相交 平行

      3、平面圖中的平行現象

      4、練習

     。1)說說下列哪些直線互相垂直?哪些互相平行?

      將圖2改為:

      提問:e和f還平行嗎?

      將圖2改為:

      當角1等于角2時,e和f還平行嗎?

     。2)滲透“同一”平面觀念

      長方體中,這兩條棱相交嗎?那么他們平行嗎?

      板書: 任意相交

      相交

      同一平面內兩條直線的位置關系 相交成直角 垂直

      不相交 平行

      四、生活中的平行與垂直

      1、舉例:生活中,你有沒有發現“垂直與平行”的現象?

      2、提問:為什么這些地方要設計成“垂直”或者“平行”?

      五、課堂總結

    初中數學優秀教案12

      學習目標:

      1、進一步理解平均數、中位數和眾數等統計量的統計意義。

      2、會計算加權平均數,理解“權”的意義,能選擇適當的統計量表示數據的集中趨勢。

      3、會計算極差和方差,理解它們的統計意義,會用它們表示數據的波動情況。

      4、會用樣本平均數、方差估計總體的平均數、方差,進一步感受抽樣的必要性,體會用樣本估計總體的思想。

      一、知識點回顧

      1、數學期末總評成績由作業分數,課堂參與分數,期考分數三部分組成,并按3:3:4的比例確定。已知小明的期考80分,作業90分,課堂參與85分,則他的總評成績為________。

      2、樣本1、2、3、0、1的平均數與中位數之和等于___.

      3、一組數據5,-2,3,x,3,-2,若每個數據都是這組數據的眾數,則這組數據的平均數是.

      4、數據1,6,3,9,8的極差是

      5、已知一個樣本:1,3,5,x,2,它的平均數為3,則這個樣本的方差是。

      二、專題練習

      1、方程思想:

      例:某次考試A、B、C、D、E這5名學生的'平均分為62分,若學生A除外,其余學生的平均得分為60分,那么學生A的得分是_____________.

      點撥:本題可以用統計學知識和方程組相結合來解決。

      同類題連接:一班級組織一批學生去春游,預計共需費用120元,后來又有2人參加進來,總費用不變,于是每人可以少分攤3元,設原來參加春游的學生x人?闪蟹匠蹋

      2、分類討論法:

      例:汶川大地震牽動每個人的心,一方有難,八方支援,5位衢州籍在外打工人員也捐款獻愛心。已知5人平均捐款560元(每人捐款數額均為百元的整數倍),捐款數額最少的也捐了200元,最多的(只有1人)捐了800元,其中一人捐600元,600元恰好是5人捐款數額的中位數,那么其余兩人的捐款數額分別是___________;

      點撥:做題過程中要注意滿足的條件。

      同類題連接:數據-1 , 3 , 0 , x的極差是5 ,則x =_____.

      3、平均數、中位數、眾數在實際問題中的應用

      例:某班50人右眼視力檢查結果如下表所示:

      視力0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1.0 1.2 1.5

      人數2 2 2 3 3 4 5 6 7 11 5

      求該班學生右眼視力的平均數、眾數與中位數.發表一下自己的看法。

      4、方差在實際問題中的應用

      例:甲、乙兩名射擊運動員在相同條件下各射靶5次,各次命中的環數如下:

      甲:5 8 8 9 10

      乙:9 6 10 5 10

      (1)分別計算每人的平均成績;

      (2)求出每組數據的方差;

      (3)誰的射擊成績比較穩定?

      三、知識點回顧

      1、平均數:

      練習:在一次英語口試中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余為84分。已知該班平均成績為80分,問該班有多少人?

      2、中位數和眾數

      練習:1.一組數據23、27、20、18、X、12,它的中位數是21,則X的值是.

      2.如果在一組數據中,23、25、28、22出現的次數依次為2、5、3、4次,并且沒有其他的數據,則這組數據的眾數和中位數分別是( )

      A.24、25 B.23、24 C.25、25 D.23、25

      3.在一次環保知識競賽中,某班50名學生成績如下表所示:

      得分50 60 70 80 90 100 110 120

      人數2 3 6 14 15 5 4 1

      分別求出這些學生成績的眾數、中位數和平均數.

      3.極差和方差

      練習:1.一組數據X 、X …X的極差是8,則另一組數據2X +1、2X +1…,2X +1的極差是( )

      A. 8 B.16 C.9 D.17

      2.如果樣本方差,

      那么這個樣本的平均數為.樣本容量為.

      四、自主探究

      1、已知:1、2、3、4、5、這五個數的平均數是3,方差是2.

      則:101、102、103、104、105、的平均數是,方差是。

      2、4、6、8、10、的平均數是,方差是。

      你會發現什么規律?

      2、應用上面的規律填空:

      若n個數據x1x2……xn的平均數為m,方差為w。

      (1)n個新數據x1+100,x2+100, …… xn+100的平均數是,方差為。

      (2)n個新數據5x1,5x2, ……5xn的平均數,方差為。

      五、學后反思:

      xxx

    初中數學優秀教案13

      教學目標:

      1、知識與技能:使學生經歷相似多邊形概念的形成過程,了解相似多邊形的定義,并能根據定義判斷兩個多邊形是否相似。

      2、過程與方法:在探索相似多邊形本質特征的過程中,進一步發展學生歸納、類比、反思、交流等方面的能力,體會反例的作用。

      3、情感態度與價值觀:通過觀察、推斷得到數學猜想、獲得數學結論的過程,體驗數學活動充滿了探索性和創造性。

      教學重點:探索相似多邊形的定義過程,以及用定義去判斷兩個多邊形是否相似。

      教學難點:探索相似多邊形的定義過程。

      教學過程:

      (一)創設情景,導入新課。(3分鐘)

      由于學生已經學習了形狀相同的圖形,在這里我向學生展示一組圖片(課件),引導學生從中找出形狀相同的圖形。學生回答后,利用課件演示抽象出多邊形。

      大多數學生可能會指出黑板邊框的內外邊緣所圍成的矩形的形狀也相同。我緊接著創設懸念:這兩個矩形的形狀相同嗎?

      利用課件演示,把內邊緣的矩形的長和寬按相同比例放大后不能與外邊緣矩形重合。此時的學生肯定倍感疑惑,急切想探個究竟。教師順勢導入新課:

      那么滿足什么條件的多邊形才是形狀相同的多邊形呢?今天我們一起來探究相似多邊形。

      (二)自主學習,合作探究。(15分鐘)

      1、動手實驗,初步感知定義。

      課前發給每個小組一套相似多邊形的圖片(其中包括兩個相似三角形、一個等邊三角形、兩個相似四邊形),組織學生按形狀相同給多邊形找朋友。然后引導學生以小組為單位從中選擇一組多邊形探究解決下面問題。

      (1)在這兩個多邊形中,是否有相等的內角?設法驗證你的猜想。

      (2)在這兩個多邊形中,相等的內角的兩邊是否成比例?

      (設計意圖:引導學生分組討論、探究、驗證、交流,并進行演示,著重引導學生說明驗證的方法,無論學生提出什么樣的驗證方式,只要有道理,教師都應給予充分肯定和鼓勵。)

      對相等內角的兩邊是否對應成比例這個問題學生可能會感到困難,由于學生已經學習了成比例線段,我會利用這一點啟發學生運用測量、計算的方法解決這一難點。

      利用多媒體演示形狀相同的六邊形的對應角相等,然后讓學生觀察計算得到,相等的內角的兩邊成比例。然后給出對應角、對應邊的概念,引導學生明確對應角、對應邊的含義。

      2、特例探究,進一步體驗定義。 (課件出示問題)

      例:下列每組圖形形狀相同,它們的對應角有怎樣的關系?對應邊呢?

      (1)三角形ABC與正三角形DEF;

      (2)正方形ABCD與正方形EFGH.

      (設計意圖:引導學生通過自主探究解決這個問題后進行適當引申,使學生認識到:邊數相同的正多邊形都相似。)

      3、歸納總結,形成概念。

      教師設問:回憶一下我們剛才探究過的每一組多邊形,你能發現它們的共同特點嗎?(課件出示四組圖形)

      (設計意圖:引導學生嘗試用自己的語言敘述定義,教師給予規范并板書。隨即給出相似多邊形的表示方法和相似比的概念,接下來引導學生回憶表示全等三角形時應注意的問題,也就是要把表示對應頂點的字母寫在對應的位置上,然后引導學生用類比的方法得到:在記兩個多邊形相似時也要把表示對應頂點的字母寫在對應的位置上,說明相似比與兩個多邊形敘述的順序有關。)

      4、深化理解。

      (1)滿足什么條件的兩個多邊形相似?

      (2)如果兩個多邊形相似,那么它們的對應角和對應邊有什么關系?

      (設計意圖:使學生認識到:相似多邊形的定義既是最基本最重要的判定方法,也是最本質最重要的特征。)

      (三)辨析研討,知識深化。(14分鐘)

      1、議一議:

      (1)觀察下面兩組圖形,圖(1)中的兩個圖形相似嗎?為什么?圖(2)中的兩個圖形呢?與同桌交流。 (課件出示圖形)

      (2)如果兩個多邊形不相似,那么它們的各角可能對應相等嗎?它們的各邊可能對應成比例嗎?

      (3)如果兩個菱形相似,那么他們需要滿足什么條件?

      (設計意圖:為了培養學生從多角度理解問題,我運用教材中兩個典型的反例,引導學生討論探究,使學生認識到:不相似的兩個多邊形的角也可能對應相等,不相似的兩個多邊形的邊也可能對應成比例;反過來說:只具備各角分別對應相等或各邊分別對應成比例的多邊形不一定相似。進而使學生明確:判斷兩個多邊形形相似,各角分別對應相等、各邊分別對應成比例這兩個條件缺一不可。通過正反兩方面的對照,能使學生更深刻地理解相似多邊形的定義。這是個易錯點,教學時應注意給學生留出充分思考交流的時間。另外在設計時,我在教材原有內容的.基礎上添加了菱形的情況(見課件),引導學生探索兩個菱形相似需要滿足什么樣的條件。)

      2、做一做。

      設問:學到這兒,你認為黑板邊框內外邊緣所成的這兩個矩形相似嗎?請你計算說明。課件出示問題:

      一塊長3m、寬1.5m的矩形黑板,鑲在其外圍的木質邊框寬7.5cm.邊框的內外邊緣所成的矩形相似嗎?為什么?(學生自主探索解決)

      (設計意圖:為了滿足學生多樣化的學習需求,使不同的學生都能獲得令自己滿意的數學知識,我把此題進行了適當的拓展和延伸。)

      拓展一:如果將黑板的上邊框去掉,其他條件不變。

      那么邊框內外邊緣所成的矩形相似嗎?為什么?

      拓展二:在拓展一的基礎上,如果矩形的長為2a,寬為a,

      邊框的寬度為x。那么邊框內外邊緣所成的矩形還相似嗎?為什么?

      (設計意圖:引導學生討論計算,解決問題。目的是讓學生明確并不是所有相互套疊的兩個矩形都不相似。使學生初步認識到直觀有時是不可靠的,研究數學問題需要在提出猜想的基礎上進行推理和計算,幫助學生養成嚴謹的學風。)

      (四)學以致用,鞏固提高。(6分鐘)

      慧眼識金!

      1、判斷下列各題是否正確:

      (1)所有的矩形都相似。

      (2)所有的正方形都相似。

      (3)對應邊成比例的兩個多邊形相似 問題解決!

      2、下圖中兩面國旗相似,則它們對應邊的比為 。

      3、如圖,兩個正六邊形廣場磚的邊長分別為a和b,它們相似嗎?為什么?

      (課件出示圖形)

      (設計意圖:為了體現相似圖形在生活中的廣泛應用,我以實際問題為背景設計練習題。這是一組基礎題,意在鞏固相似多邊形的定義以及相似比的計算。)

      (五)課堂小結,知識升華。(2分鐘)

      師生共同完成。

      (設計意圖:教師首先肯定學生在課堂中大膽的猜想和思維的積極性,然后引導學生從幾方面進行反思:我學會了什么,我最感興趣的是,我發現了什么,我能解決,我獲得的數學方法是幫助學生構成新的知識網絡,形成技能。)

      (六)布置作業:

      1、 P113 習題第3題

      2、畫一畫:在方格紙中畫出兩個相似多邊形。

      3、探究題:小林在一塊長為6m,寬為4m一邊靠墻的矩形的小花園周圍,栽種了一種蝴蝶花裝飾,這種蝴蝶花的邊框寬為20cm,邊框內外邊緣所圍成的兩個矩形相似嗎?第1、2題作為必做題;第3題作為選做題,是對課堂上做一做的再次拓展和延伸:當矩形的長與寬的比不再是2:1時,邊框內外邊緣所圍成的兩個矩形還相似嗎?

      板書設 4、相似多邊形

      定義: 各角對應相等,

      各邊對應成比例

      表示方法:∽

      相似比:

    初中數學優秀教案14

      一、教學目的:

      1.理解并掌握菱形的定義及兩個判定方法;會用這些判定方法進行有關的論證和計算;

      2.在菱形的判定方法的探索與綜合應用中,培養學生的觀察能力、動手能力及邏輯思維能力。

      二、重點、難點

      1.教學重點:菱形的兩個判定方法。

      2.教學難點:判定方法的證明方法及運用。

      三、例題的意圖分析

      本節課安排了兩個例題,其中例1是教材P109的例3,例2是一道補充的題目,這兩個題目都是菱形判定方法的直接的運用,主要目的是能讓學生掌握菱形的判定方法,并會用這些判定方法進行有關的論證和計算.這些題目的'推理都比較簡單,學生掌握起來不會有什么困難,可以讓學生自己去完成.程度好一些的班級,可以選講例3.

      四、課堂引入

      1.復習

     。1)菱形的定義:一組鄰邊相等的平行四邊形;

     。2)菱形的性質1菱形的四條邊都相等;性質2菱形的對角線互相平分,并且每條對角線平分一組對角;

     。3)運用菱形的定義進行菱形的判定,應具備幾個條件?(判定:2個條件)

      2.問題

      要判定一個四邊形是菱形,除根據定義判定外,還有其它的判定方法嗎?

      3.探究

     。ń滩腜109的探究)用一長一短兩根木條,在它們的中點處固定一個小釘,做成一個可轉動的十字,四周圍上一根橡皮筋,做成一個四邊形.轉動木條,這個四邊形什么時候變成菱形?

      通過演示,容易得到:

      菱形判定方法1對角線互相垂直的平行四邊形是菱形。

      注意此方法包括兩個條件:

     。1)是一個平行四邊形。

     。2)兩條對角線互相垂直。

    初中數學優秀教案15

      學習目標

      1、了解分式的概念,會判斷一個代數式是否是分式。

      2、能用分式表示簡單問題中數量之間的關系,能解釋簡單分式的實際背景或幾何意義。

      3、能分析出一個簡單分式有、無意義的條件。

      4、會根據已知條件求分式的值。

      學習重點

      分式的概念,掌握分式有意義的條件

      學習難點

      分式有、無意義的條件

      教學流程

      預習導航

      一、創設情境:

      京滬鐵路是我國東部沿海地區縱貫南北的交通大動脈,全長1462km,是我國最繁忙的鐵路干線之一。如果貨運列車的速度為akm/h,快速列車的速度為貨運列車2倍,那么:

      (1)貨運列車從北京到上海需要多長時間?

      (2)快速列車從北京到上海需要多長時間?

      (3)已知從北京到上?焖倭熊嚤蓉涍\列車少用多少時間?

      觀察剛才你們所列的式子,它們有什么特點?

      這些式子與分數有什么相同和不同之處?

      合作探究

      一、概念探究:

      1、列出下列式子:

      (1)一塊長方形玻璃板的面積為2㎡,如果寬為am,那么長是

      (2)小麗用n元人民幣買了m袋瓜子,那么每袋瓜子的價格是 元。

      (3)正n邊形的每個內角為 度。

      (4)兩塊面積分別為a公頃、b公頃的棉田,產棉花分別為m㎏、n㎏。這兩塊棉田平均每公頃產棉花 ______㎏。

      2、兩個數相除可以把它們的商表示成分數的形式。如果用字母 分別表示分數的分子和分母,那么 可以表示成什么形式呢?

      3、思考:

      上面所列各式有什么共同特點?

      (通過對以上幾個實際問題的研討,學會用 的形式表示實際問題中數量之間的'關系,感受把分數推廣到分式的優越性和必要性)

      分式的概念:

      4、小結分式的概念中應注意的問題.

     、 分式是兩個整式相除的商式,其中分子為被除式,分母為除式,分數線起除號的作用;

     、 分式的分母中必須含有字母,而分子中可以含有字母,也可以不含字母,這是區別整式的重要依據;

     、 如同分數一樣,在任何情況下,分式的分母的值都不可以為0,否則分式無意義。分式分母不為零是隱含在此分式中而無須注明的條件。

      二、例題分析:

      例1 : 試解釋分式 所表示的實際意義

      例2:求分式 的值 ①a=3 ②a=—

      例3:當取什么值時,分式 (1)沒有意義?(2)有意義?(3)值為零。

      三、展示交流:

      1、在 ____________中,是整式的有_____________________,是分式的有________________;

      2、 寫成分式為____________,且當m≠_____時分式有意義;

      3、當x_______時,分式 無意義,當x______時,分式的值為1。

      4、 若分式 的值為正數,則x的取值應是 ( )

      A. , B. C. D. 為任意實數

      四、提煉總結:

      1、什么叫分式?

      2、分式什么時候有意義?怎樣求分式的值

    【初中數學優秀教案】相關文章:

    初中數學優秀教案10-12

    (熱)初中數學優秀教案06-22

    初中數學優秀教案9篇【精華】12-19

    初中數學優秀教案[范例15篇]06-22

    初中數學 教案02-24

    數學優秀教案01-19

    初中數學實數教案01-06

    初中數學函數教案01-03

    初中數學方差教案12-28

    初中數學矩形教案12-30

    av片在线观看无码免费_日日高潮夜夜爽高清视频_久久精品中文字幕乱码视频_在线亚州av播放