• <i id="549yd"></i>
  • 
    
  • 現在位置:范文先生網>教案大全>數學教案>八年級數學教案>八年級數學教案

    八年級數學教案

    時間:2024-06-22 10:29:08 八年級數學教案 我要投稿

    (薦)八年級數學教案

      在教學工作者開展教學活動前,時常會需要準備好教案,編寫教案助于積累教學經驗,不斷提高教學質量。優秀的教案都具備一些什么特點呢?下面是小編為大家整理的八年級數學教案,希望能夠幫助到大家。

    (薦)八年級數學教案

    八年級數學教案1

      教學目標:

      1、經歷用數格子的辦法探索勾股定理的過程,進一步發展學生的合情推力意識,主動探究的習慣,進一步體會數學與現實生活的緊密聯系。

      2、探索并理解直角三角形的三邊之間的數量關系,進一步發展學生的說理和簡單的推理的意識及能力。

      重點難點:

      重點:了解勾股定理的由來,并能用它來解決一些簡單的問題。

      難點:勾股定理的發現

      教學過程

      一、創設問題的情境,激發學生的學習熱情,導入課題

      出示投影1(章前的圖文p1)教師道白:介紹我國古代在勾股定理研究方面的貢獻,并結合課本p5談一談,講述我國是最早了解勾股定理的國家之一,介紹商高(三千多年前周期的數學家)在勾股定理方面的貢獻。

      出示投影2(書中的P2圖1—2)并回答:

      1、觀察圖

      1—2,正方形A中有_______個小方格,即A的面積為______個單位。

      正方形B中有_______個小方格,即A的面積為______個單位。

      正方形C中有_______個小方格,即A的面積為______個單位。

      2、你是怎樣得出上面的結果的?在學生交流回答的基礎上教師直接發問:

      3、圖

      1—2中,A,B,C之間的面積之間有什么關系?

      學生交流后形成共識,教師板書,A+B=C,接著提出圖1—1中的A。B,C的關系呢?

      二、做一做

      出示投影3(書中P3圖1—4)提問:

      1、圖

      1—3中,A,B,C之間有什么關系?

      2、圖

      1—4中,A,B,C之間有什么關系?

      3、從圖

      1—1,1—2,1—3,1|—4中你發現什么?

      學生討論、交流形成共識后,教師總結:

      以三角形兩直角邊為邊的正方形的面積和,等于以斜邊的正方形面積。

      三、議一議

      1、圖

      1—1、1—2、1—3、1—4中,你能用三角形的邊長表示正方形的面積嗎?

      2、你能發現直角三角形三邊長度之間的關系嗎?

      在同學的交流基礎上,老師板書:

      直角三角形邊的兩直角邊的平方和等于斜邊的平方。這就是的“勾股定理”

      也就是說:如果直角三角形的兩直角邊為a,b,斜邊為c

      那么

      我國古代稱直角三角形的較短的直角邊為勾,較長的為股,斜邊為弦,這就是勾股定理的.由來。

      3、分別以

      5厘米和12厘米為直角邊做出一個直角三角形,并測量斜邊的長度(學生測量后回答斜邊長為13)請大家想一想(2)中的規律,對這個三角形仍然成立嗎?(回答是肯定的:成立)

      四、想一想

      這里的29英寸(74厘米)的電視機,指的是屏幕的長嗎?只的是屏幕的款嗎?那他指什么呢?

      五、鞏固練習

      1、錯例辨析:

      △ABC的兩邊為3和4,求第三邊

      解:由于三角形的兩邊為3、4

      所以它的第三邊的c應滿足=25

      即:c=5

      辨析:(1)要用勾股定理解題,首先應具備直角三角形這個必不可少的條件,可本題

      △ ABC并未說明它是否是直角三角形,所以用勾股定理就沒有依據。

     。2)若告訴△ABC是直角三角形,第三邊C也不一定是滿足,題目中并為交待C是斜邊

      綜上所述這個題目條件不足,第三邊無法求得。

      2、練習P

      7 §1.1 1

      六、作業

      課本P7 §1.1 2、3、4

    八年級數學教案2

      一、教材分析

      1、特點與地位:重點中的重點。

      本課是教材求兩結點之間的最短路徑問題是圖最常見的應用的之一,在交通運輸、通訊網絡等方面具有一定的實用意義。

      2、重點與難點:結合學生現有抽象思維能力水平,已掌握基本概念等學情,以及求解最短路徑問題的自身特點,確立本課的重點和難點如下:

     。1)重點:如何將現實問題抽象成求解最短路徑問題,以及該問題的解決方案。

     。2)難點:求解最短路徑算法的程序實現。

      3、教學安排:最短路徑問題包含兩種情況:一種是求從某個源點到其他各結點的最短路徑,另一種是求每一對結點之間的最短路徑。根據教學大綱安排,重點講解第一種情況問題的解決。安排一個課時講授。教材直接分析算法,考慮實際應用需要,補充旅游景點線路選擇的實例,實例中問題解決與算法分析相結合,逐步推動教學過程。

      二、教學目標分析

      1、知識目標:掌握最短路徑概念、能夠求解最短路徑。

      2、能力目標:

     。1)通過將旅游景點線路選擇問題抽象成求最短路徑問題,培養學生的數據抽象能力。

     。2)通過旅游景點線路選擇問題的解決,培養學生的獨立思考、分析問題、解決問題的能力。

      3、素質目標:培養學生講究工作方法、與他人合作,提高效率。

      三、教法分析

      課前充分準備,研讀教材,查閱相關資料,制作多媒體課件。教學過程中除了使用傳統的“講授法”以外,主要采用“案例教學法”,同時輔以多媒體課件,以啟發的方式展開教學。由于本節課的內容屬于圖這一章的難點,考慮學生的接受能力,注意與學生溝通,根據學生的反應控制好教學進度是本節課成功的關鍵。

      四、學法指導

      1、課前上次課結課時給學生布置任務,使其有針對性的預習。

      2、課中指導學生討論任務解決方法,引導學生分析本節課知識點。

      3、課后給學生布置同類型任務,加強練習。

      五、教學過程分析

     。ㄒ唬┱n前復習(3~5分鐘)回顧“路徑”的概念,為引出“最短路徑”做鋪墊。

      教學方法及注意事項:

     。1)采用提問方式,注意及時小結,提問的目的是幫助學生回憶概念。

     。2)提示學生“溫故而知新”,養成良好的學習習慣。

     。ǘ⿲胄抡n(3~5分鐘)以城市公路網為例,基于求兩個點間最短距離的實際需要,引出本課教學內容“求最短路徑問題”。教學方法及注意事項:

     。1)先講實例,再指出概念,既可以吸引學生注意力,激發學習興趣,又可以實現教學內容的`自然過渡。

     。2)此處使用案例教學法,不在于問題的求解過程,只是為了說明問題的存在,所以這里的例子只需要概述,能夠說明問題即可。

     。ㄈ┲v授新課(25~30分鐘)

      1、求某一結點到其他各結點的最短路徑(重點)主要采用案例教學法,提出旅游景點選擇的例子,解決如何選擇代價小、景點多的路線。

     。1)將實際問題抽象成圖中求任一結點到其他結點最短路徑問題。(3~5分鐘)教學方法及注意事項:

     、僦饕捎弥v授法,將實際問題用圖形表示出來。語言描述轉換的方法(用圓圈加標號表示某一景點,用箭頭表示從某景點到其他景點是否存在旅游線路,并且將旅途費用寫在箭頭的旁邊。)一邊用語言描述,一邊在黑上畫圖。

     、谧⒁馐痉懂媹D只進行一部分,讓學生獨立思考、自主完成余下部分的轉化。

     、奂皶r總結,原型抽象(景點作為圖的結點,景點間的線路作為圖的邊,旅途費用作為邊的權值),將案例求解問題抽象成求圖中某一結點到其他各結點的最短路徑問題。

     、芾枚嗝襟w課件,向學生展示一張帶權有向圖,并略作解釋,為后續教學做準備。

      教學方法及注意事項:

     、賳l式教學,如何實現按路徑長度遞增產生最短路徑?

     、诮Y合案例分析求解最短路徑過程中(重點)注意此處借助黑板,按照算法思想的步驟。同樣,也是只示范一部分,余下部分由學生獨立思考完成。

     。ㄋ模┱n堂小結(3~5分鐘)

      1、明確本節課重點

      2、提示學生,這種方式形成的圖又可以解決哪類實際問題呢?

     。ㄎ澹┎贾米鳂I

      1、書面作業:復習本次課內容,準備一道備用習題,靈活把握時間安排。

      六、教學特色

      以旅游路線選擇為主線,靈活采用案例教學、示范教學、多媒體課件等多種手段輔助教學,使枯燥的理論講解生動起來。在順利開展教學的同時,體現所講內容的實用性,提高學生的學習興趣。

    八年級數學教案3

      教學目標:

      【知識與技能】

      1、理解并掌握等腰三角形的性質。

      2、會用符號語言表示等腰三角形的性質。

      3、能運用等腰三角形性質進行證明和計算。

      【過程與方法】

      1、通過觀察等腰三角形的對稱性,發展學生的形象思維。

      2、通過實踐、觀察、證明等腰三角形的性質,積累數學活動經驗,感受數學思考過程的條理性,發展學生的合情推理能力。

      3、通過運用等腰三角形的性質解決有關問題,提高學生運用幾何語言表達問題的,運用知識和技能解決問題的能力。

      【情感態度】

      引導學生對圖形的觀察、發現,激發學生的好奇心和求知欲,并在運用數學知識解答問題的活動中取得成功的體驗。

      【教學重點】

      等腰三角形的性質及應用。

      【教學難點】

      等腰三角形的證明。

      教學過程:

      一、情境導入,初步認識

      問題1什么叫等腰三角形?它是一個軸對稱圖形嗎?請根據自己的理解,利用軸對稱的知識,自己做一個等腰三角形。要求學生獨立思考,動手作圖后再互相交流評價。

      可按下列方法做出:

      作一條直線l,在l上取點A,在l外取點B,作出點B關于直線l的對稱點C,連接AB,AC,CB,則可得到一個等腰三角形。

      問題2每位同學請拿出事先準備好的長方形紙片,按下圖方式折疊剪裁,再把它展開,觀察并討論:得到的△ABC有什么特點?

      教師指導:上述過程中,剪刀剪過的兩條邊是相等的,即△ABC中AB=AC,所以△ABC是等腰三角形。

      把剪出的等腰三角形ABC沿折痕對折,找出其中重合的線段和角。由這些重合的線段和角,你能發現等腰三角形的性質嗎?說說你的猜想。

      在一張白紙上任意畫一個等腰三角形,把它剪下來,請你試著折一折。你的猜想仍然成立嗎?

      教學說明:通過學生的動手操作與觀察發現,加深學生對等腰三角形性質的理解。

      二、思考探究,獲取新知

      教師依據學生討論發言的情況,歸納等腰三角形的性質:

     、佟螧=∠C→兩個底角相等。

     、贐D=CD→AD為底邊BC上的中線。

     、邸螧AD=∠CAD→AD為頂角∠BAC的平分線。

      ∠ADB=∠ADC=90°→AD為底邊BC上的高。

      指導學生用語言敘述上述性質。

      性質1等腰三角形的兩個底角相等(簡寫成:“等邊對等角”)。

      性質2等腰三角形的頂角平分線、底邊上的中線,底邊上的高重合(簡記為:“三線合一”)。

      教師指導對等腰三角形性質的證明。

      1、證明等腰三角形底角的性質。

      教師要求學生根據猜想的結論畫出相應的圖形,寫出已知和求證。在引導學生分析思路時強調:

      (1)利用三角形全等來證明兩角相等。為證∠B=∠C,需證明以∠B,∠C為元素的兩個三角形全等,需要添加輔助線構造符合證明要求的兩個三角形。

      (2)添加輔助線的方法可以有多種方式:如作頂角平分線,或作底邊上的中線,或作底邊上的高等。

      2、證明等腰三角形“三線合一”的性質。

      【教學說明】在證明中,設計輔助線是關鍵,引導學生用全等的方法去處理,在不同的輔助線作法中,由輔助線帶來的條件是不同的.,重視這一點,要求學生板書證明過程,以體會一題多解帶來的體驗。

      三、典例精析,掌握新知

      例如圖,在△ABC中,AB=AC,點D在AC上,且BD=BC=AD,求△ABC各角的度數。

      解:∵AB=AC,BD=BC=AD,

      ∴∠ABC=∠C=∠BDC,∠A=∠ABD(等邊對等角)。

      設∠A=x,則∠BDC=∠A+∠ABD=2x,

      從而∠ABC=∠C=∠BDC=2x。

      于是在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,

      解得x=36°

      于是在△ABC中,有∠A=36°,∠ABC=∠C=72°。

      【教學說明】等腰三角形“等邊對等角”及“三線合一”性質,可以實現由邊到角的轉化,從而可求出相應角的度數。要在解題過程中,學會從復雜圖形中分解出等腰三角形,用方程思想和數形結合思想解決幾何問題。

      四、運用新知,深化理解

      第1組練習:

      1、如圖,在下列等腰三角形中,分別求出它們的底角的度數。

      如圖,△ABC是等腰直角三角形,AB=AC,∠BAC=90°,AD是底邊BC上的高,標出∠B,∠C,∠BAD,∠DAC的度數,指出圖中有哪些相等線段。

      2、如圖,在△ABC,AB=AD=DC,∠BAD=26°,求∠B和∠C的度數。

      第2組練習:

      1、如果△ABC是軸對稱圖形,則它一定是( )

      A、等邊三角形

      B、直角三角形

      C、等腰三角形

      D、等腰直角三角形

      2、等腰三角形的一個外角是100°,它的頂角的度數是( )

      A、80° B、20°

      C、80°和20° D、80°或50°

      3、已知等腰三角形的腰長比底邊多2cm,并且它的周長為16cm。求這個等腰三角形的邊長。

      4、如圖,在△ABC中,過C作∠BAC的平分線AD的垂線,垂足為D,DE∥AB交AC于E。求證:AE=CE。

      【教學說明】

      等腰三角形解邊方面的計算類型較多,引導學生見識不同類型,并適時概括歸納,幫學生形成解題能力,注意提醒學生分類討論思想的應用。

      【答案】

      第1組練習答案:

      1、(1)72°;(2)30°

      2、∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD

      3、∠B=77°,∠C=38、5°

      第2組練習答案:

      1、C

      2、C

      3、設三角形的底邊長為xcm,則其腰長為(x+2)cm,根據題意,得2(x+2)+x=16。解得x=4!嗟妊切蔚娜呴L為4cm,6cm和6cm。

      4、延長CD交AB的延長線于P,在△ADP和△ADC中,∠PAD=∠CAD,AD=AD,∠PDA=∠CDA,∴△ADP≌△ADC!唷螾=∠ACD。又∵DE∥AP,∴∠CDE=∠P!唷螩DE=∠ACD,∴DE=EC。同理可證:AE=DE!郃E=CE。

      四、師生互動,課堂小結

      這節課主要探討了等腰三角形的性質,并對性質作了簡單的應用。請學生表述性質,提醒每個學生要靈活應用它們。

      學生間可交流體會與收獲。

    八年級數學教案4

      教學目標

      理解平行四邊形的定義,能根據定義探究平行四邊形的性質.

      教學思考

      1.通過觀察、實驗、猜想、驗證、推理、交流等數學活動,發展學生合情推理能力和動手操作能力及應用數學的意識與能力.

      2.能夠根據平行四邊形的性質進行簡單的推理和計算.

      解決問題

      通過平行四邊形性質的探索過程,豐富學生從事數學活動的經驗與體驗,能運用平行四邊形的性質進行有關的推理和計算,發展應用意識.

      情感態度

      在應用平行四邊形的性質的過程養成獨立思考的習慣,在數學學習活動中獲得成功的體驗.

      重點

      平行四邊形的性質的探究和平行四邊形的性質的應用.

      難點

      平行四邊形的性質的應用.

      教學流程安排

      活動流程圖

      活動內容和目的

      活動1欣賞圖片,了解生活中的特殊四邊形

      活動2剪三角形紙片,拼凸四邊形

      活動3理解平行四邊形的概念

      活動4探究平行四邊形邊、角的性質

      活動5平行四邊形性質的應用

      活動6評價反思、布置作業

      熟悉生活中特殊的四邊形,導出課題.

      通過用三角形拼四邊形的'過程,滲透轉化思想,激發探索精神.

      掌握平行四邊形的定義及表示方法.

      探究平行四邊形的性質.

      運用平行四邊形的性質.

      學生交流,內化知識,課后鞏固知識.

      教學過程設計

      問題與情景

      師生行為

      設計意圖

    [活動1]

      下面的圖片中,有你熟悉的哪些圖形?

     。ǔ鍪緢D片)

      演示圖片,學生欣賞.

      教師介紹四邊形與我們生活密切聯系,學生可再補充列舉.

      從實例圖片中,抽象出的特殊四邊形,培養學生的抽象思維.通過舉例,讓學生感受到數學與我們的生活緊密聯系.

      問題與情景

      師生行為

      設計意圖

      [活動2]

      拼一拼

      將一張紙對折,剪下兩張疊放的三角形紙片.將這兩個三角形相等的一組邊重合,你會得到怎樣的圖形.

     。1)你拼出了怎樣的凸四邊形?與同伴交流.

     。2)一位同學拼出了如下圖所示的一個四邊形,這個四邊形的對邊有怎樣的位置關系?說說你的理由.

      學生經過實驗操作,開展獨立思考與合作學習.

      教師深入學生之中,觀察學生頻出的方法與過程,接受學生質疑并指導個別學生探究.

      教師待學生充分探究后,請學生展示拼圖的方法和不同的圖形.并引導學生分析(2)中的四邊形的邊的位置特征,從而引出本節課研究的內容

    八年級數學教案5

      學習重點:函數的概念 及確定自變量的取值范圍。

      學習難點:認識函數,領會函數的意義。

      【自主復習知識準備】

      請你舉出生活中含有兩個變量的變化過程,說明其中的常量和變量。

      【自主探究知識應用】

      請看書72——74頁內容,完成下列問題:

      1、 思考書中第72頁的問題,歸納出變量之間的關系。

      2、 完成書上第73頁的思考,體會圖形中體現的變量和變量之間的關系。

      3、 歸納出函數的定義,明確函數定義中必須要滿足的條件。

      歸納:一般的,在一個變化過程中,如果有______變量x和y,并且對于x的_______,y都有_________與其對應,那么我們就說x是__________,y是x的________。如果當x=a時,y=b,那么b叫做當自變量的值為a時的函數值。

      補充小結:

      (1)函數的定義:

      (2)必須是一個變化過程;

      (3)兩個變量;其中一個變量每取一個值 ,另一個變量有且有唯一值對它對應。

      三、鞏固與拓展:

      例1:一輛汽車的油箱中現有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:千米)的增加而減少,平均耗油量為0.1L/千米。

      (1)寫出表示y與x的函數關系式.

      (2)指出自變量x的取值范圍.

      (3) 汽車行駛200千米時,油箱中還有多少汽油?

      【當堂檢測知識升華】

      1、判斷下列變量之間是不是函數關系:

      (1)長方形的寬一定時,其長與面積;

      (2)等腰三角形的底邊長與面積;

      (3)某人的年齡與身高;

      2、寫出下列函數的解析式.

      (1)一個長方體盒子高3cm,底面是正方形,這個長方體的體積為y(cm3),底面邊長為x(cm),寫出表示y與x的函數關系的式子.

      (2)汽車加油時,加油槍的流量為10L/min.

     、偃绻佑颓,油箱里還有5 L油,寫出在加油過程中,油箱中的.油量y(L)與加油時間x(min)之間的函數關系;

     、谌绻佑蜁r,油箱是空的,寫出在加油過程中,油箱中的油量y(L)與加油時間x(min) 之間的函數關系.

      (3)某種活期儲蓄的月利率為0.16%,存入10000元本金,按國家規定,取款時,應繳納利息部分的20%的利息稅,求這種活期儲蓄扣除利息稅后實得的本息和y(元)與所存月數x之間的關系式.

      (4)如圖,每個圖中是由若干個盆花組成的圖案,每條邊(包括兩個頂點)有n盆花,每個圖案的花盆總數是S,求S與n之間的關系式.

      八年級變量與函數(2)數學教案的全部內容由數學網提供,教材中的每一個問題,每一個環節,都有教師依據學生學習的實際和教材的實際進行有針對性的設置,希望大家喜歡!

    八年級數學教案6

      平方差公式

      學習目標:

      1、能推導平方差公式,并會用幾何圖形解釋公式;

      2、能用平方差公式進行熟練地計算;

      3、經歷探索平方差公式的推導過程,發展符號感,體會特殊一般特殊的認識規律.

      學習重難點:

      重點:能用平方差公式進行熟練地計算;

      難點:探索平方差公式,并用幾何圖形解釋公式.

      學習過程:

      一、自主探索

      1、計算:(1)(m+2) (m-2) (2)(1+3a) (1-3a)

      (3) (x+5y)(x-5y) (4)(y+3z) (y-3z)

      2、觀察以上算式及其運算結果,你發現了什么規律?再舉兩例驗證你的發現.

      3、你能用自己的語言敘述你的發現嗎?

      4、平方差公式的特征:

      (1)、公式左邊的兩個因式都是二項式。必須是相同的兩數的和與差;蛘哒f兩 個二項式必須有一項完全相同,另一項只有符號不同。

      (2)、公式中的a與b可以是數,也可以換成一個代數式。

      二 、試一試

      例1、利用平方差公式計算

      (1)(5+6x)(5-6x) (2)(x-2y)(x+2y) (3)(-m+n)(-m-n)

      例2、利用平方差公式計算

      (1)(1)(- x-y)(- x+y) (2)(ab+8)(ab-8) (3)(m+n)(m-n)+3n2

      三、合作交流

      如圖,邊長為a的大正方形中有一個邊長為b的小正方形.

      (1)請表示圖中陰影部分的面積.

      (2)小穎將陰影部分拼成了一個長方形,這個長方形的長和寬分別是多少?你能表示出它的面積嗎? a a b

      (3)比較(1)(2)的結果,你能驗證平方差公式嗎?

      四、鞏固練習

      1、利用平方差公式計算

      (1)(a+2)(a-2) (2)(3a+2b)(3a-2b)

      (3)(-x+1)(-x-1) (4)(-4k+3)(-4k-3)

      2、利用平方差公式計算

      (1)803797 (2)398402

      3.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示( )

      A.只能是數 B.只能是單項式 C.只能是多項式 D.以上都可以

      4.下列多項式的乘法中,可以用平方差公式計算的是( )

      A.(a+b)(b+a) B.(-a+b)(a-b)

      C.( a+b)(b- a) D.(a2-b)(b2+a)

      5.下列計算中,錯誤的有( )

     、(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;

     、(3-x)(x+3)=x2-9;④(-x+y)(x+y)=-(x-y)(x+y)=-x2-y2.

      A.1個 B.2個 C.3個 D.4個[來源:中.考.資.源.網WWW.ZK5U.COM]

      6.若x2-y2=30,且x-y=-5,則x+y的值是( )

      A.5 B.6 C.-6 D.-5

      7.(-2x+y)(-2x-y)=______.

      8.(-3x2+2y2)(______)=9x4-4y4.

      9.(a+b-1)(a-b+1)=(_____)2-(_____)2.

      10.兩個正方形的邊長之和為5,邊長之差為2,那么用較大的正方形的.面積減去較小的正方形的面積,差是_____.

      11.利用平方差公式計算:20 19 .

      12.計算:(a+2)(a2+4)(a4+16)(a-2).

      五、學習反思

      我的收獲:

      我的疑惑:

      六、當堂測試

      1、下列多項式乘法中能用平方差公式計算的是( ).

      (A)(x+1)(1+x) (B)(1/2b+b)(-b-1/2a) (C)(-a+b)(-a-b) (D)(x2-y)(x+y2)[

      2、填空:(1)(x2-2)(x2+2)=

      (2)(5x-3y)( )=25x2-9y2

      3、計算:

      (1)(-2x+3y)(-2x-3y) (2)(a-2)(a+2)(a2+4)

      4.利用平方差公式計算

     、1003997 ②14 15

      七、課外拓展

      下列各式哪些能用平方差公式計算?怎樣用?

      1) (a-b+c)(a-b-c)

      2) (a+2b-3)(a-2b+3)

      3) (2x+y-z+5)(2x-y+z+5)

      4) (a-b+c-d)(-a-b-c-d)

      2.2完全平方公式(1)

    八年級數學教案7

      一、教學目標

      知識目標

      1.了解并掌握分式乘除法運算法則。

      2.會運用分式乘除法法則進行分式乘除法運算。

      能力目標

      1.會通過類比的方法來理解和掌握分式的乘除法法則。

      2.熟練運用分式乘除法法則,將分式乘除法全部化歸為分式乘法進行計算。

      情感目標

      1.繼續熟悉“數、式通性”的數學思想方法。

      2.會通過類比的方法來理解和掌握分式的乘除法法則。

      二、重點難點和關鍵

      重點

      會用分式乘除法法則進行分式乘除法的運算。

      難點

      會將多項式因式分解。

      關鍵

      將除法轉化為乘法進行計算。

      三、教學方法和輔助手段

      教學方法

      講練結合、以練為主

      輔助手段

      幻燈投影演示

      四、教學過程

      復習

      1.計算:

      2.分數的乘除法法則是什么?

      新課講解

      1.分式的乘除法法則

      提問:由分數的乘除法法則猜想分式的.乘除法法則是什么?(討論、交流、集中評講)

      分式乘除法法則:(略)

      式子表示:

      2.例題講解

      例2計算:(解略)

      注意:

      1.計算過程要對照分式乘除法法則,將乘除法全部化為乘法進行。

      2.第三題中的(-8xyz)應看成分母是“1”的式子。

      3.計算結果要化為最簡分式或整式。

      4.運算過程中要注意符號的變化。

      練習:P67 T1(板演)

      例3計算:(解略)

      注意:分式乘除法運算時,分子分母中的多項式要先因式分解,再約分。

      練習:P67 T2(1)—(4)(板演)

      例4計算:

      解:=

      注意:

      1.分子分母中的多項式一般要先按某一字母降冪或升冪排列。

      2.同級運算中,如沒有附加條件(如括號),則應按從左到右的順序進行計算。

      練習:P67 T(5)(板演)

      小結

      這節課學習了運用“分式乘除法法則”進行分式乘除法的方法,主要借助分式約分、因式分解等知識來進行,計算的結果應是最簡分式或整式。

      作業

      P73 A組T4 T5 T6

      五、板書設計(略)

      六、教學后記

    八年級數學教案8

      【教學目標】

      一、教學知識點

      1.命題的組成.

      2.命題真假的判斷。

      二、能力訓練要求:

      1.使學生能夠分清命題的條件和結論,能判斷命題的真假

      2.通過舉例判定一個命題是假命題,使學生學會反面思考問題的方法

      三、情感與價值觀要求:

      1.通過反例說明假命題,使學生認識到任何事情都是正反兩方面對立統一

      2.幫助學生了解數學發展史,拓展視野,激發學習興趣

      3.通過對《原本》介紹,使學生感受數學發展史和人類文明價值

      【教學重點】準確的找出命題的條件和結論

      【教學難點】理解判斷一個真命題需要證明

      【教學方】探討、合作交流

      【教具準備】投影片

      【教學過程】

      一、情景創設、引入新課

      師:如果這個星期不下雨,我們就去郊游,這是命題嗎?分析這句話,這個周日,我們郊游一定能成行嗎?為什么?

      新課:

     。1)觀察下列命題,你能發現這些命題有什么共同結構特征?與同伴交流。

      1.如果兩個三角形的三條邊對應相等,那么這兩個三角形全等。

      2.如果一個四邊形的一組對邊平行且相等,那么這個四邊形是平行四邊形。

      3.如果一個三角形是等腰三角形,那么這個三角形的兩個底角相等。

      4.如果一個四邊形的對角線相等,那么這個四邊形是矩形。

      5.如果一個四邊形的兩條對角線相互垂直,那么這個四邊形是菱形。

      師:由此可見,每個命題都是由條件和結論兩部分組成的,條件是已知的事項,結論是由已知事項推出的事項。一般地,命題都可以寫成“如果……那么……”的形式,其中“如果”引出部分是條件,“那么”引出部分是結論。

      二、例題講解:

      例1:師:下列命題的條件是什么?結論是什么?

      1.如果兩個角相等,那么他們是對頂角;

      2.如果a>b,b>c,那么a=c;

      3.兩角和其中一角的對邊對應相等的兩個三角形全等;

      4.菱形的四條邊都相等;

      5.全等三角形的面積相等。

      例題教學建議:1:其中(1)、(2)請學生直接回答,(3)、(4)、(5)請學生分成小組交流然后回答。

      2:有的命題的描述沒有用“如果……那么……”的形式,在分析時可以擴展成這種形式,以分清條件和結論。

      例2:上述命題哪些是正確的,哪些是不正確的?你是怎么知道它是不正確的?與同伴交流。

      師:正確的命題叫真命題,不正確的命題叫假命題。要說明一個命題是假命題,通?梢耘e一個例子,使之具備命題的條件,卻不具備命題的`結論,即反例。

      教學建議:對于反例的要求可以采取啟發式層層遞進方式給出,即:說明命題錯誤可以舉例→綜合命題(1)、(2)的兩例,兩例條件具備→例子結論不吻合→給出如何舉反例要求。

      三、思維拓展:

      拓展1.師:如何證實一個命題是真命題呢?請同學們分小組交流一下。

      教學建議:不急于解決學生怎么證實真命題的問題,可按以下程序設計教學過程

     。1)首先給學生介紹歐幾里得的《原本》

     。2)引出概念:公理、定理,證明

     。3)啟發學生,現在如何證實一個命題的正確性

     。4)給出本套教材所選用如下6個命題作為公理

     。5)等式性質、不等式有關性質,等量代換也看作定理。

      拓展2.師:任何公理、定理是命題嗎?是真命題嗎?為什么?

      建議:在學生回答后歸納總結:公理是經過長期實踐驗證的,不需要再進行推理論證都承認的真命題。定理是經過推理論證的真命題。

      練習書p197習題6.31

      四、問題式總結

      師:經過本節課我們在一起共同探討交流,你了解了有關命題的哪些知識?

      建議:可對學生進行提示性引導,如:命題的構成特點、命題是否都正確、如何判斷一個命題是假命題、如何證實一個命題是真命題。

      作業:書p197習題6.32、3

      板書設計:

      定義與命題

      課時2

      條件

      1.命題的結構特征

      結論

      1.假命題——可以舉反例

      2.命題真假的判別

      2.真命題——需要證明 學生活動一——

      探索命題的結構特征

      學生觀察、分組討論,得出結論:

     。1)這五個命題都是用“如果……那么……”形式敘述的

     。2)這五個命題都是由已知得到結論

     。3)這五個命題都有條件和結論

      學生活動二——

      探索命題的條件和結論

      生:命題1、2如果部分是條件,那么部分是結論;命題3如果兩個三角形兩角和其中一角對邊對應相等是條件,那么這兩個三角形全等是結論;命題4如果是菱形是條件,那么四條邊相等是結論;命題5如果兩三角形全等是條件,那么面積相等是結論。

      學生活動三

      探索命題的真假——如何判斷假命題

      生:可以舉一個例子,說明命題1是不正確的,如圖:

      已知:∠AOB,∠1=∠2,∠1,∠2不是對頂角

      生:命題2,若a=10,b=8,c=5,此時a>b,b>c,但a≠c

      生:由此說明:命題1、2是不正確的

      生:命題3、4、5是正確的

      學生活動四

      探索命題的真假——如何證實一個命題是真命題

      學生交流:

      生:用我們以前學過的觀察、實驗、驗證特例等方法

      生:這些方法往往并不可靠

      生:能夠根據已知道的真命題證實呢?

      生:那已經知道的真命題又是如何證實的?

      生:那可怎么辦呢?

      生:可通過證明的方法

      學生分小組討論得出結論

      生:命題的結構特征:條件和結論

      生:命題有真假之分

      生:可以通過舉反例的方法判斷假命題

      生:可通過證明的方法證實真命題

    八年級數學教案9

      一、學生起點分析

      學生已經了勾股定理,并在先前其他內容學習中已經積累了一定百度一下的逆向思維、逆向研究的經驗,如:已知兩直線平行,有什么樣的結論?

      反之,滿足什么條件的兩直線是平行?因而,本課時由勾股定理出發逆向思考獲得逆命題,學生應該已經具備這樣的意識,但具體研究中

      可能要用到反證等思路,對現階段學生而言可能還具有一定困難,需要教師適時的引導。

      二、學習任務分析

      本節課是北師大版數學八年級(上)第一章《勾股定理》第2節。教學任務有:探索勾股定理的逆定理

      并利用該定理根據邊長判斷一個三角形是否是直角三角形,利用該定理解決一些簡單的實際問題;通過具體的數,增加對勾股數的直觀體驗。為此確定教學目標:

      ● 知識與技能目標

      1.理解勾股定理逆定理的具體內容及勾股數的概念;

      2.能根據所給三角形三邊的條件判斷三角形是否是直角三角形。

      ● 過程與方法目標

      1.經歷一般規律的探索過程,發展學生的抽象思維能力;

      2.經歷從實驗到驗證的過程,發展學生的數學歸納能力。

      ● 情感與態度目標

      1.體驗生活中的數學的應用價值,感受數學與人類生活的密切聯系,激發學生學數學、用數學的興趣;

      2.在探索過程中體驗成功的喜悅,樹立學習的自信心。

      教學重點

      理解勾股定理逆定理的具體內容。

      三、教法學法

      1.教學方法:實驗猜想歸納論證

      本節課的教學對象是初二學生,他們的參與意識較強,思維活躍,對通過實驗獲得數學結論已有一定的體驗

      但數學思維嚴謹的同學總是心存疑慮,利用邏輯推理的方式,讓同學心服口服顯得非常迫切,為了實現本節課的教學目標,我力求從以下三個方面對學生進行引導:

      (1)從創設問題情景入手,通過知識再現,孕育教學過程;

      (2)從學生活動出發,通過以舊引新,順勢教學過程;

      (3)利用探索,研究手段,通過思維深入,領悟教學過程。

      2.課前準備

      教具:教材、電腦、多媒體課件。

      學具:教材、筆記本、課堂練習本、文具。

      四、教學過程設計

      本節課設計了七個環節。第一環節:情境引入;第二環節:合作探究;第三環節:小試牛刀;第四環節:

      登高望遠;第五環節:鞏固提高;第六環節:交流小結;第七環節:布置作業。

      第一環節:情境引入

      內容:

      情境:1.直角三角形中,三邊長度之間滿足什么樣的關系?

      2.如果一個三角形中有兩邊的平方和等于第三邊的平方,那么這個三角形是否就是直角三角形呢?

      意圖:

      通過情境的創設引入新課,激發學生探究熱情。

      效果:

      從勾股定理逆向思維這一情景引入,提出問題,激發了學生的求知欲,為下一環節奠定了良好的基礎。

      第二環節:合作探究

      內容1:探究

      下面有三組數,分別是一個三角形的三邊長 ,①5,12,13;②7,24,25;③8,15,17;并回答這樣兩個問題:

      1.這三組數都滿足 嗎?

      2.分別以每組數為三邊作出三角形,用量角器量一量,它們都是直角三角形嗎?學生分為4人活動小組,每個小組可以任選其中的一組數。

      意圖:

      通過學生的.合作探究,得出若一個三角形的三邊長 ,滿足 ,則這個三角形是直角三角形這一結論;在活動中體驗出數學結論的發現總是要經歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發展規律。

      效果:

      經過學生充分討論后,匯總各小組實驗結果發現:①5,12,13滿足 ,可以構成直角三角形;②7,24,25滿足 ,可以構成直角三角形;③8,15,17滿足 ,可以構成直角三角形。

      從上面的分組實驗很容易得出如下結論:

      如果一個三角形的三邊長 ,滿足 ,那么這個三角形是直角三角形

      內容2:說理

      提問:有同學認為測量結果可能有誤差,不同意這個發現。你認為這個發現正確嗎?你能給出一個更有說服力的理由嗎?

      意圖:讓學生明確,僅僅基于測量結果得到的結論未必可靠,需要進一步通過說理等方式使學生確信結論的可靠性,同時明晰結論:

      如果一個三角形的三邊長 ,滿足 ,那么這個三角形是直角三角形

      滿足 的三個正整數,稱為勾股數。

      注意事項:為了讓學生確認該結論,需要進行說理,有條件的班級,還可利用幾何畫板動畫演示,讓同學有一個直觀的認識。

      活動3:反思總結

      提問:

      1.同學們還能找出哪些勾股數呢?

      2.今天的結論與前面學習勾股定理有哪些異同呢?

      3.到今天為止,你能用哪些方法判斷一個三角形是直角三角形呢?

      4.通過今天同學們合作探究,你能體驗出一個數學結論的發現要經歷哪些過程呢?

      意圖:進一步讓學生認識該定理與勾股定理之間的關系

      第三環節:小試牛刀

      內容:

      1.下列哪幾組數據能作為直角三角形的三邊長?請說明理由。

     、9,12,15; ②15,36,39; ③12,35,36; ④12,18,22

      解答:①②

      2.一個三角形的三邊長分別是 ,則這個三角形的面積是( )

      A 250 B 150 C 200 D 不能確定

      解答:B

      3.如圖1:在 中, 于 , ,則 是( )

      A 等腰三角形 B 銳角三角形

      C 直角三角形 D 鈍角三角形

      解答:C

      4.將直角三角形的三邊擴大相同的倍數后, (圖1)

      得到的三角形是( )

      A 直角三角形 B 銳角三角形

      C 鈍角三角形 D 不能確定

      解答:A

      意圖:

      通過練習,加強對勾股定理及勾股定理逆定理認識及應用

      效果

      每題都要求學生獨立完成(5分鐘),并指出各題分別用了哪些知識。

      第四環節:登高望遠

      內容:

      1.一個零件的形狀如圖2所示,按規定這個零件中 都應是直角。工人師傅量得這個零件各邊尺寸如圖3所示,這個零件符合要求嗎?

      解答:符合要求 , 又 ,

      2.一艘在海上朝正北方向航行的輪船,航行240海里時方位儀壞了,憑經驗,船長指揮船左傳90,繼續航行70海里,則距出發地250海里,你能判斷船轉彎后,是否沿正西方向航行?

      解答:由題意畫出相應的圖形

      AB=240海里,BC=70海里,,AC=250海里;在△ABC中

      =(250+240)(250-240)

      =4900= = 即 △ABC是Rt△

      答:船轉彎后,是沿正西方向航行的。

      意圖:

      利用勾股定理逆定理解決實際問題,進一步鞏固該定理。

      效果:

      學生能用自己的語言表達清楚解決問題的過程即可;利用三角形三邊數量關系 判斷一個三角形是直角三角形時,當遇見數據較大時,要懂得將 作適當變形( ),以便于計算。

      第五環節:鞏固提高

      內容:

      1.如圖4,在正方形ABCD中,AB=4,AE=2,DF=1, 圖中有幾個直角三角形,你是如何判斷的?與你的同伴交流。

      解答:4個直角三角形,它們分別是△ABE、△DEF、△BCF、△BEF

      2.如圖5,哪些是直角三角形,哪些不是,說說你的理由?

      圖4 圖5

      解答:④⑤是直角三角形,①②③⑥不是直角三角形

      意圖:

      第一題考查學生充分利用所學知識解決問題時,考慮問題要全面,不要漏解;第二題在于考查學生如何利用網格進行計算,從而解決問題。

      效果:

      學生在對所學知識有一定的熟悉度后,能夠快速做答并能簡要說明理由即可。注意防漏解及網格的應用。

      第六環節:交流小結

      內容:

      師生相互交流總結出:

      1.今天所學內容①會利用三角形三邊數量關系 判斷一個三角形是直角三角形;②滿足 的三個正整數,稱為勾股數;

      2.從今天所學內容及所作練習中總結出的經驗與方法:①數學是源于生活又服務于生活的;②數學結論的發現總是要經歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發展規律;③利用三角形三邊數量關系 判斷一個三角形是直角三角形時,當遇見數據較大時,要懂得將 作適當變形, 便于計算。

      意圖:

      鼓勵學生結合本節課的學習談自己的收獲和感想,體會到勾股定理及其逆定理的廣泛應用及它們的悠久歷史;敢于面對數學學習中的困難,并有獨立克服困難和運用知識解決問題的成功經驗,進一步體會數學的應用價值,發展運用數學的信心和能力,初步形成積極參與數學活動的意識。

      效果:

      學生暢所欲言自己的切身感受與實際收獲,總結出利用三角形三邊數量關系 判斷一個三角形是直角三角形從古至今在實際生活中的廣泛應用。

      第七環節:布置作業

      課本習題1.4第1,2,4題。

      五、教學反思:

      1.充分尊重教材,以勾股定理的逆向思維模式引入如果一個三角形的三邊長 ,滿足 ,是否能得到這個三角形是直角三角形的問題;充分引用教材中出現的例題和練習。

      2.注重引導學生積極參與實驗活動,從中體驗任何一個數學結論的發現總是要經歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發展規律。

      3.在利用今天所學知識解決實際問題時,引導學生善于對公式變形,便于簡便計算。

      4.注重對學習新知理解應用偏困難的學生的進一步關注。

      5.對于勾股定理的逆定理的論證可根據學生的實際情況做適當調整,不做要求。

      由于本班學生整體水平較高,因而本設計教學容量相對較大,教學中,應注意根據自己班級學生的狀況進行適當的刪減或調整。

      附:板書設計

      能得到直角三角形嗎

      情景引入 小試牛刀: 登高望遠

    八年級數學教案10

      分式方程

      教學目標

      1.經歷分式方程的概念,能將實際問題中的等量關系用分式方程 表示,體會分式方程的模型作用.

      2.經歷實際問題-分式方程方程模型的過程,發展學生分析問題、解決問題的能力,滲透數學的轉化思想人體,培養學生的應用意識。

      3.在活動中培養學生樂于探究、合作學習的習慣,培養學 生努力尋找 解決問題的進取心,體會數學的應用價值.

      教學重點:

      將實際問題中的等量 關系用分式方程表示

      教學難點:

      找實際問題中的等量關系

      教學過程:

      情境導入:

      有兩塊面積相同的小麥試驗田,第一塊使用原品種,第二 塊使用新品種,分別收獲小麥9000 kg和15000 kg。已知第一塊試驗田每公頃的產量比第二塊少3000 kg,分別求這兩塊試驗田每 公頃 的產量。你能找出這一問題中的所有等量關系嗎?(分組交流)

      如果設第一塊試驗田 每公頃的產量為 kg,那么第二塊試驗田每公頃的產量是________kg。

      根據題意,可得方程___________________

      二、講授新課

      從甲地到乙地有兩條公路:一條是全長600 km的普通 公路,另一條是全長480 km的'高速公路。某客 車在 高速公路上行駛的平均速度比在普通公路上快45 km/h,由高速 公路從甲地到乙地所需的時間 是由普通公路從甲地到乙地所需時間的一半。求該客車由高速公路從 甲地到乙地所需的時間。

      這 一問題中有哪些等量關系?

      如果設客車由高速公路從甲地到乙地 所需的時間為 h,那么它由普通公路從甲地到乙地所需的時間為_________h。

      根據題意,可得方程_ _____________________。

      學生分組探討、交流,列出方程.

      三.做一做:

      為了幫助遭受自然災害的地區重建家園,某學校號召同學們自愿捐款。已知第一次捐款總額為4800元,第二次捐款總額為5000元,第二次捐款人數比第一次多20人,而且兩次人均捐款額恰好相等。如果設第一次捐款人數為 人,那么 滿足怎樣的方程?

      四.議一議:

      上面所得到的方程有什么共同特點?

      分母中含有未知數的方程叫做分式方程

      分式方程與整式方程有什么區別?

      五、 隨堂練習

      (1)據聯合國《20xx年全球投資 報告》指出,中國20xx年吸收外國投資額 達530億美元,比上一年增加了13%。設20xx年我國吸收外國投資額為 億美元,請你寫出 滿足的方程。你能寫出幾個方程?其中哪一個是分式方程?

      (2)輪船在順水中航行20千米與逆水航行10千米所用時間相同,水流速度為2. 5千米/小時,求輪船的靜水速度

      (3)根據分式方程 編一道應用題,然后同組交流,看誰編得好

      六、學 習小結

      本節課你學到了哪些知識?有什么感想?

      七.作業布置

    八年級數學教案11

      一、課堂導入

      回顧平行四邊的性質定理及定義

      1.什么叫平行四邊形?平行四邊形有什么性質?

      2.將以上的性質定理,分別用命題形式敘述出來。(如果……那么……)

      根據平行四邊形的定義,我們研究了平行四邊形的其它性質,那么如何來判定一個四邊形是平行四邊形呢?除了定義還有什么方法?平行四邊形性質定理的逆命題是否成立?

      二、新課講解

      平行四邊形的判定:

      (定義法):兩組對邊分別平行的四邊形的平邊形。

      幾何語言表達定義法:

      ∵AB∥CD,AD∥BC,∴四邊形ABCD是平行四邊形

      解析:一個四邊形只要其兩組對邊分別互相平行,則可判定這個四邊形是一個平行四邊形。

      活動:用做好的紙條拼成一個四邊形,其中強調兩組對邊分別相等。

      (平行四邊形判定定理):

      (一)兩組對邊分別相等的四邊形是平行四邊形。

      設問:這個命題的前提和結論是什么?

      已知:四邊形ABCD中,AB=CD,BC=DA。

      求證:四邊ABCD是平行四邊形。

      分析:判定平行四邊形的依據目前只有定義,也就是須證明兩組對邊分別平行,當然是借助第三條直線證明角等。連結BD。易證三角形全等。

      板書證明過程。

      小結:用幾何語言表達用定義法和剛才證明為正確的方法證明一個四邊形是平行四邊形的方法為:

      平行四邊形判定定理1:二組對邊分別相等的四邊形是平行四邊形∵AB=CD,AD=BC,∴四邊形ABCD是平行四邊形

      (二)設問:若一個四邊形有一組對邊平行且相等,能否判定這個四邊形也是平行四邊形呢?

      活動:課本探究內容,并用事準備好的'紙條(紙條的長度相等),先將紙條放置不平行位置,讓學生設想若二紙條的端點為四邊形的頂點,則組成的四邊形是不是平行四邊形?若將紙條擺放為平行的位置,則同樣用二紙條的端點為頂點組成的四邊形是不是平行四邊形?

      設問:我們能否用推理的方法證明這個命題是正確的呢?(讓學生找出題設、結論,然后寫出已知、求證及證明過程。)

    八年級數學教案12

      教學目標:

      1、知道負整數指數冪=(a≠0,n是正整數)、

      2、掌握整數指數冪的運算性質、

      3、會用科學計數法表示小于1的數、

      教學重點:

      掌握整數指數冪的運算性質。

      難點:

      會用科學計數法表示小于1的數。

      情感態度與價值觀:

      通過學習課堂知識使學生懂得任何事物之間是相互聯系的,理論來源于實踐,服務于實踐。能利用事物之間的類比性解決問題、

      教學過程:

      一、課堂引入

      1、回憶正整數指數冪的運算性質:

     。1)同底數的冪的乘法:am?an = am+n(m,n是正整數);

     。2)冪的乘方:(am)n = amn (m,n是正整數);

     。3)積的乘方:(ab)n = anbn (n是正整數);

     。4)同底數的`冪的除法:am÷an = am?n(a≠0,m,n是正整數,m>n);

     。5)商的乘方:()n = (n是正整數);

      2、回憶0指數冪的規定,即當a≠0時,a0 = 1、

      3、你還記得1納米=10?9米,即1納米=米嗎?

      4、計算當a≠0時,a3÷a5 ===,另一方面,如果把正整數指數冪的運算性質am÷an = am?n (a≠0,m,n是正整數,m>n)中的m>n這個條件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0)。

      二、總結:一般地,數學中規定:當n是正整數時,=(a≠0)(注意:適用于m、n可以是全體整數)教師啟發學生由特殊情形入手,來看這條性質是否成立、事實上,隨著指數的取值范圍由正整數推廣到全體整數,前面提到的運算性質都可推廣到整數指數冪;am?an = am+n(m,n是整數)這條性質也是成立的、

      三、科學記數法:

      我們已經知道,一些較大的數適合用科學記數法表示,有了負整數指數冪后,小于1的正數也可以用科學記數法來表示,例如:0。000012 = 1。2×10?即小于1的正數可以用科學記數法表示為a×10?n的形式,其中a是整數位數只有1位的正數,n是正整數。啟發學生由特殊情形入手,比如0。012 = 1。2×10?2,0。0012 = 1。2×10?3,0。00012 = 1。2×10?4,以此發現其中的規律,從而有0。0000000012 = 1。2×10?9,即對于一個小于1的正數,如果小數點后到第一個非0數字前有8個0,用科學記數法表示這個數時,10的指數是?9,如果有m個0,則10的指數應該是?m?1。

    八年級數學教案13

      一、學情分析

      本學期本人繼續擔任八年級(2)班的數學教學工作,八年級是初中學習過程中的關鍵時期,學生基礎的好壞,直接影響到將來是否能升學。從上期期末考試的成績來看1班、2班的成績差異很大,2班有少數學生不上進,思維不緊跟老師,有部分同學基礎較差,問題較嚴重。要在本期獲得理想成績,老師和學生都要付出努力,查漏補缺,充分發揮學生是學習的主體,教師是教的主體作用,注重方法,培養能力。

      二、教材分析

      本學期教學內容共計五章,知識的前后聯系,教材的教學目標,重、難點分析如下:

      第十七章分式

      本章的主要內容包括:分式的概念,分式的基本性質,分式的約分與通分,分式的加、減、乘、除運算,整數指數冪的概念及運算性質,分式方程的概念及可化為一元一次方程的分式方程的解法。

      第十八章函數及其圖像

      函數是研究現實世界變化規律的一個重要模型,本單元學生在學習了一次函數后,進一步研究反比例函數。學生在本章中經歷:反比例函數概念的抽象概括過程,體會建立數學模型的思想,進一步發展學生的抽象思維能力;經歷反比例函數的圖象及其性質的探索過程,在交流中發展能力這是本章的重點之一;經歷本章的重點之二:利用反比例函數及圖象解決實際問題的過程,發展學生的數學應用能力;經歷函數圖象信息的識別應用過程,發展學生形象思維;能根據所給信息確定反比例函數表達式,會作反比例函數圖象,并利用它們解決簡單的實際問題。本章的難點在于對學生抽象思維的培養,以及提高數形結合的意識和能力。

      第十九章全等三角形

      本章主要內容是探索三角形全等的判定方法,領略推理證明的奧秘,由于三角形全等的判定方法與全等三角形的性質具有“互逆”的特點,所以本章因勢利導,介紹了命題與定理、逆命題與逆命題的有關知識。此外,本章教材最后還介紹了幾種常用的基本作圖和簡單的尺規作圖的方法。

      第二十章平行四邊形的'判定

      本章的內容包括平行四邊形的判定;矩形、菱形、正方形等幾種特殊平行四邊形的判定;等腰梯形的判定等幾個部分。本章首先通過回顧平行四邊形的性質,由性質引出判定方法,在此基礎上,學習矩形、菱形、正方形等特殊平行四邊形的判定,最后介紹了等腰梯形的判定與應用。本章知識是在學習了平行線、三角形、平行四邊形的性質等知識的基礎上的進一步深化和提高,是今后學習其他幾何知識的基礎。

      第二十一章數據的整理與初步處理

      本章主要研究平均數、中位數、眾數以及極差、方差等統計量的統計意義,學習如何利用這些統計量分析數據的集中趨勢和離散情況,并通過研究如何用樣本的平均數和方差估計總體的平均數和方差,進一步體會用樣本估計總體的思想。

      三、提高學科教育質量的主要措施:

      1、認真做好教學六認真工作。把教學六認真作為提高成績的主要方法,認真研讀新課程標準,鉆研新教材,根據新課程標準,擴充教材內容,認真上課,批改作業,認真輔導,認真制作測試試卷,也讓學生學會認真學習。

      2、興趣是最好的老師,愛因斯坦如是說。激發學生的興趣,給學生介紹數學家,數學史,介紹相應的數學趣題,給出數學課外思考題,激發學生的興趣。

      3、引導學生積極參與知識的構建,營造民主、和諧、平等、自主、探究、合作、交流、分享發現快樂的高效的學習課堂,讓學生體會學習的快樂,享受學習。引導學生寫小論文,寫復習提綱,使知識來源于學生的構造。

      4、引導學生積極歸納解題規律,引導學生一題多解,多解歸一,培養學生透過現象看本質,提高學生舉一反三的能力,這是提高學生素質的根本途徑之一,培養學生的發散思維,讓學生處于一種思如泉涌的狀態。

      5、運用新課程標準的理念指導教學,積極更新自己腦海中固有的教育理念,不同的教育理念將帶來不同的教育效果。

      6、培養學生良好的學習習慣,陶行知說:教育就是培養習慣,有助于學生穩步提高學習成績,發展學生的非智力因素,彌補智力上的不足。

      7、指導成立“課外興趣小組”的民間組織,開展豐富多彩的課外活動,開展對奧數題的研究,課外調查,操作實踐,帶動班級學生學習數學,同時發展這一部分學生的特長。

      8、開展分層教學,布置作業設置A、B、C三類分層布置分別適合于差、中、好三類學生,課堂上的提問照顧好好、中、差三類學生,使他們都等到發展。

      9、進行個別輔導,優生提升能力,扎實打牢基礎知識,對差生,一些關鍵知識,輔導差生過關,為差生以后的發展鋪平道路。

      10、培養學生學習數學的良好習慣。這些習慣包括:

     、僬J真做作業的習?包括作業前清理好桌面,作業后認真檢查;

     、陬A習的習慣;

     、壅J真看批改后的作業并及時更正的習慣;

     、苷J真做好課前準備的習慣;

     、菰跁献骶P記的習慣;

     、尥咨票9軙Y料和學習用品的習慣;

     、哒J真閱讀數學教材的習慣。

    八年級數學教案14

      【教學目標】:

      1、幫助學生總結一般三角形全等的判定條件,使他們自覺運用各種全等判定法進行說理;

      2、通過一般三角形全等判定條件的歸納,幫助學生認識事物間存在著的因果關系和制約的關系。

      【重點難點】:

      1、重點:讓學生識別三角的哪些元素能用來確定三角形的形狀與大小,因而可用來判定三角形全等。

      2、難點:靈活應用各種判定法識別全等三角形。

      【教學準備】:

      卡紙剪出的圖1、2中的六個三角形。

     。▓D1)(圖2)

      【教學過程】:

      一、復習

      1、判定兩個三角形全等的條件有哪些?

     。ㄓ蠸AS、ASA、AAS、SSS。HL)

      2、一個三角形共有三條邊與三個角,你是否想到這樣一問題了:除了上述四種判定法,還有其他的三角形全等判定法嗎?比如說“SSA”、“AAA”能成為判定兩個三角形全等的條件嗎?

      二、新授

      1、演示

     。1)演示圖1中的I、II三角形,它們間有兩邊及一對角對應相等,這兩個三角形能完全重合,是全等形。但再取出III的三角形與I疊在一起后,發現它們不重合不是全等形,因此我們進一點證實了:有兩邊和其中一邊的對角對應相等的兩個三角形不一定全等!癝SA”不是判定三角形全等的方法。

     。2)演示圖2中的I、II三角形,它們間有三個角對應相等,這兩個三角形能完全重合,是全等形,但再取出III的三角形與I疊在一起后,發現它們不重合,不是全等形。因此我們進一步證實了:三個角對應相等的兩個三角形不一定全等“AAA”也不是判定三角形全等的方法。

      2、填下表(掛出小黑板,讓學生思考、討論,共同填答)。

      兩個三角形中對應相等的元素兩個三角形是否全等依據的判定法反例

      SSS√SSS

      SAS√SAS

      SSAX可舉反例

      ASA√ASA

      AAS√AAS

      AAAX可舉反例

      3、范例

      例:如圖,,,點F是CD的中點,嗎?試說明理由。

      教學要點:

     。1)分析題目結論假定,可轉化為,需證它們所在的`兩個三角形全等;

     。2)觀察圖形,、中,并不在三角形中,為此添輔助線AC、AD;

     。3)在△ACF與△ADF中,已知AF是公共邊,CF= FD,尚缺一條件,它只能是AC與AD相等;

     。4)為證AC與AD相等。又要找它們分別在的△ACB與△ADE;

     。5)△ACB與△ADE,由已知條件可由SAS證它們全等;

     。6)書寫范例。

      解:連結AC、AD,由已知AB=AE,,BC=DE

      由SAS三角形全等判定法可知:

      △ABC≌△AED

      根據全等三角形的對應相等可知

      由,,(公共邊),根據SSS可知△ACF≌△ADF

      根據全等三角形的對應角相等可知

      又由于F在直線CD上,可得,即。

      你們可有其他方法嗎?

     三、鞏固練習

      1、如圖,在△ABC中,,,試說明△AED是等腰三角形。

      2、如圖,AB∥CD,AD∥BC,與,與相等嗎?說明理由。

      四、小結由學生對本節的學習過程進行總結。

      五、作業

     。ㄒ唬、填空題:

      1、有一邊對應相等的兩個三角形全等;

      2、有一邊和對應相等的兩個三角形全等;3、有兩邊和一角對應相等的兩個三角形全等;

      4、如圖,AB∥CD,AD∥BC,AC、BD相交于點O。

     。1)由AD∥BC,可得=,由AB∥CD,可得=,又由,于是△ABD ≌△CDB;

     。2)由,可得AD=CB,由,可得△AOD≌△COB;

     。3)圖中全等三角形共有對。

     。ǘ、選擇題:

      1、若△ABC≌△BAD,A和B、C和D是對應頂點,如果,,,則BC的長是()

      A、 B、 C、 D、無法確定

      2、下列各說法中,正確的是()

      A、有兩邊和一角對應相等的兩個三角形全等;

      B、有兩個角對應相等且周長相等的兩個三角形全等;

      C、兩個銳角對應相等的兩個直角三角形全等;

      D、有兩組邊相等且周長相等的兩個三角形全等。

     。ㄈ、解答題:

      1 、如圖,,,AC、BD交于點,圖中共有幾對長度相等的線段,你是通過什么辦法找到的?

      2、如圖,,,(1)等于多少度?

     。2)圖中有哪幾組平行線?

     。3)與的和是定值嗎?

    八年級數學教案15

      一、內容和內容解析

      1.內容

      三角形中相關元素的概念、按邊分類及三角形的三邊關系.

      2.內容解析

      三角形是一種最基本的幾何圖形,是認識其他圖形的基礎,在本章中,學好了三角形的有關概念和性質,為進一步學習多邊形的相關內容打好基礎,本節主要介紹與三角形的的概念、按邊分類和三角形三邊關系,使學生對三角形的有關知識有更為深刻的理解.

      本節課的教學重點:三角形中的相關概念和三角形三邊關系.

      本節課的教學難點:三角形的三邊關系.

      二、目標和目標解析

      1.教學目標

      (1)了解三角形中的相關概念,學會用符號語言表示三角形中的對應元素.

      (2)理解并且靈活應用三角形三邊關系.

      2.教學目標解析

      (1)結合具體圖形,識三角形的概念及其基本元素.

      (2)會用符號、字母表示三角形中的相關元素,并會按邊對三角形進行分類.

      (3)理解三角形兩邊之和大于第三邊這一性質,并會運用這一性質來解決問題.

      三、教學問題診斷分析

      在探索三角形三邊關系的過程中,讓學生經歷觀察、探究、推理、交流等活動過程,培養學生的和推理能力和合作學習的精神.

      四、教學過程設計

      1.創設情境,提出問題

      問題回憶生活中的三角形實例,結合你以前對三角形的了解,請你給三角形下一個定義.

      師生活動:先讓學生分組討論,然后各小組派代表發言,針對學生下的定義,給出各種圖形反例,如下圖,指出其不完整性,加深學生對三角形概念的理解.

      【設計意圖】三角形概念的獲得,要讓學生經歷其描述的`過程,借此培養學生的語言表述能力,加深學生對三角形概念的理解.

      2.抽象概括,形成概念

      動態演示“首尾順次相接”這個的動畫,歸納出三角形的定義.

      師生活動:

      三角形的定義:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形.

      【設計意圖】讓學生體會由抽象到具體的過程,培養學生的語言表述能力.

      補充說明:要求學生學會三角形、三角形的頂點、邊、角的概念以及幾何表達方法.

      師生活動:結合具體圖形,教師引導學生分析,讓學生學會由文字語言向幾何語言的過渡.

      【設計意圖】進一步加深學生對三角形中相關元素的認知,并進一步熟悉幾何語言在學習中的應用.

      3.概念辨析,應用鞏固

      如圖,不重復,且不遺漏地識別所有三角形,并用符號語言表示出來.

      1.以AB為一邊的三角形有哪些?

      2.以∠D為一個內角的三角形有哪些?

      3.以E為一個頂點的三角形有哪些?

      4.說出ΔBCD的三個角.

      師生活動:引導學生從概念出發進行思考,加深學生對三角形中相關元素概念的理解.

      4.拓廣延伸,探究分類

      我們知道,按照三個內角的大小,可以將三角形分為銳角三角形、直角三角形和鈍角三角形,如果要按照邊的大小關系對三角形進行分類,又應該如何分呢?小組之間同學進行交流并說說你們的想法.

      師生活動:通過討論,學生類比按角的分類方法按邊對三角形進行分類,接著引出等腰三角形及等邊三角形的概念,引導學生了解等腰三角形與等邊三角形的聯系,強化學生對三角形按邊分類的理解.

    【八年級數學教案】相關文章:

    八年級的數學教案12-14

    八年級《函數》數學教案08-17

    八年級數學教案12-09

    人教版八年級數學教案11-04

    八年級數學教案【精】12-04

    八年級數學教案【推薦】12-04

    八年級下冊數學教案01-01

    八年級的數學教案15篇12-14

    八年級上冊數學教案12-11

    八年級數學教案[精品]05-29

    av片在线观看无码免费_日日高潮夜夜爽高清视频_久久精品中文字幕乱码视频_在线亚州av播放