【熱門】高一數學教案
作為一名默默奉獻的教育工作者,編寫教案是必不可少的,借助教案可以恰當地選擇和運用教學方法,調動學生學習的積極性。優秀的教案都具備一些什么特點呢?下面是小編整理的高一數學教案,僅供參考,大家一起來看看吧。
高一數學教案1
教材分析:冪函數作為一類重要的函數模型,是學生在系統地學習了指數函數、對數函數之后研究的又一類基本的初等函數。本課的教學重點是掌握常見冪函數的概念和性質,難點是根據冪函數的單調性比較兩個同指數的指數式的大小。 冪函數模型在生活中是比較常見的,學習時結合生活中的具體實例來引出常見的冪函數 。
組織學生畫出他們的圖象,根據圖象觀察、總結這幾個常見冪函數的性質。對于冪函數,只需重點掌握 這五個函數的圖象和性質。 學習中學生容易將冪函數和指數函數混淆,因此在引出冪函數的概念之后,可以組織學生對兩類不同函數的表達式進行辨析。
學生已經有了學習冪函數和對象函數的學習經歷,這為學習冪函數做好了方法上的準備。因此,學習過程中,引入冪函數的概念之后,嘗試放手讓學生自己進行合作探究學習。
教學目標:
、逯R和技能
1、了解冪函數的概念,會畫冪函數 ,的圖象,并能結合這幾個冪函數的圖象,了解冪函數圖象的變化情況和性質。
2、了解幾個常見的冪函數的性質。
、孢^程與方法
1、通過觀察、總結冪函數的性質,培養學生概括抽象和識圖能力。
2、使學生進一步體會數形結合的思想。
、缜楦、態度與價值觀
1、通過生活實例引出冪函數的概念,使學生體會到生活中處處有數學,激發學生的學習興趣。
2、利用計算機等工具,了解冪函數和指數函數的本質差別,使學生充分認識到現代技術在人們認識世界的過程中的作用,從而激發學生的學習欲望。 教學重點 常見冪函數的概念和性質 教學難點 冪函數的單調性與冪指數的關系
教學過程
一、創設情景,引入新課
問題1:如果張紅購買了每千克1元的水果w千克,那么她需要付的錢數p(元)和購買的水果量w(千克)之間有何關系? (總結:根據函數的定義可知,這里p是w的'函數)
問題2:如果正方形的邊長為a,那么正方形的面積 ,這里S是a的函數。
問題3:如果正方體的邊長為a,那么正方體的體積 ,這里V是a的函數。
問題4:如果正方形場地面積為S,那么正方形的邊長xx,這里a是S的函數
問題5:如果某人xxs內騎車行進了xxkm,那么他騎車的速度,這里v是t的函數。
以上是我們生活中經常遇到的幾個數學模型,你能發現以上幾個函數解析式有什么共同點嗎?(右邊指數式,且底數都是變量)這只是我們生活中常用到的一類函數的幾個具體代表,如果讓你給他們起一個名字的話,你將會給他們起個什么名字呢?(變量在底數位置,解析式右邊都是冪的形式)(適當引導:從自變量所處的位置這個角度)(引入新課,書寫課題)
二、新課講解
。ㄒ唬﹥绾瘮档母拍钊绻O變量為,函數值為xx,你能根據以上的生活實例得到怎樣的一些具體的函數式?這里所得到的函數是冪函數的幾個典型代表,你能根據此給出冪函數的一般式嗎?這就是冪函數的一般式,你能根據指數函數、對數函數的定義,給出冪函數的定義嗎?xx冪函數的定義:一般地,我們把形如xx的函數稱為冪函數(power function),其中xx是自變量,xx是常數。
【探究一】冪函數與指數函數有什么區別?(組織學生回顧指數函數的概念)
結論:冪函數和指數函數都是我們高中數學中研究的兩類重要的基本初等函數,從它們的解析式看有如下區別:對冪函數來說,底數是自變量,指數是常數對指數函數來說,指數是自變量,底數是常數
試一試:判斷下列函數那些是冪函數(1)(2)(3)(4)我們已經對冪函數的概念有了比較深刻的認識,根據我們前面學習指數函數、對數函數的學習經歷,你認為我們下面應該研究什么呢?(研究圖象和性質)
。ǘ⿴讉常見冪函數的圖象和性質 在初中我們已經學習了冪函數x的圖象和性質,請同學們在同一坐標系中畫出它們的圖象。根據你的學習經歷,你能在同一坐標系內畫出函數x的圖象嗎?
【探究二】觀察函數x的圖象,將你發現的結論寫在下表內。定義域,值域,奇偶性,單調性,定點,圖象范圍
【探究三】根據上表的內容并結合圖象,試總結函數:x的共同性質。
。1)函數x的圖象都過點
。2)函數x在x上單調遞增;
歸納:冪函數x圖象的基本特征是,當x是,圖象過點x,且在第一象限隨x的增大而上升,函數在區間x上是單調增函數。(演示幾何畫板制作課件:冪函數。asp)
請同學們模仿我們探究冪函數x圖象的基本特征x的情況探討x時冪函數x圖象的基本特征。(利用drawtools軟件作圖研究)
歸納:xx時冪函數x圖象的基本特征:過點x,且在第一象限隨x的增大而下降,函數在區間x上是單調減函數,且向右無限接近X軸,向上無限接近Y軸。
。ㄈ├}剖析
【例1】求下列冪函數的定義域,并指出其奇偶性、單調性。(1) (2) (3)
分析:根據你的學習經歷,你覺得求一個函數的定義域應該從哪些方面來考慮?
方法引導:解決有關函數求定義域的問題時,可以從以下幾個方面來考慮,列出相應不等式或不等式組,解不等式或不等式組即可得到所求函數的定義域。
。1)若函數解析式中含有分母,分母不能為0;
。2)若函數解析式中含有根號,要注意偶次根號下非負;
。3)0的0次冪沒有意義;
。4)若函數解析式中含有對數式,要注意對數的真數大于0;求函數的定義域的本質是解不等式或不等式組。
結論:在函數解析式中含有分數指數時,可以把它們的解析式化成根式,根據“偶次根號下非負”這一條件來求出對應函數的定義域;當函數解析式的冪指數為負數時,根據負指數冪的意義將其轉化為分式形式,根據分式的分母不能為0這一限制條件來求出對應函數的定義域。歸納分析如果判斷冪函數的單調性(第一象限利用性質,其余象限利用函數奇偶性與單調性的關系)
【例2】比較下列各組數中兩個值的大。ㄔ跈M線上填上“<”或“>”)
。1)________
。2)________
。3)__________
。4)____________
分析:利用考察其相對應的冪函數和指數函數來比較大小
三、課堂小結
1、冪函數的概念及其指數函數表達式的區別
2、常見冪函數的圖象和冪函數的性質。
四、布置作業
、逭n本第73頁習題2.4
第1、2、3題
、嫠伎碱}:根據下列條件對于冪函數x的有關性質的敘述,分別指出冪函數x的圖象具有下列特點之一時的x的值,其中:
。1)圖象過原點,且隨x的增大而上升;
。2)圖象不過原點,不與坐標軸相交,且隨x的增大而下降;
。3)圖象關于x軸對稱,且與坐標軸相交;
。4)圖象關于x軸對稱,但不與坐標軸相交;
。5)圖象關于原點對稱,且過原點;
。6)圖象關于原點對稱,但不過原點;
檢測與反饋
1、下列函數中,是冪函數的是( )
A、 B、 C、 D、
2、下列結論正確的是( )
A、冪函數的圖象一定過原點
B、當xx時,冪函數x是減函數
C、當xx時,冪函數x是增函數
D、函數 既是二次函數,也是冪函數
3、下列函數中,在 是增函數的是( )
A、 B、 C、 D、
4、函數 的圖象大致是( )
5、已知某冪函數的圖象經過點 ,則這個函數的解析式為_______________________
6、寫出下列函數的定義域,并指出它們的單調性:
同伴評 (優、良、中、須努力)
自 評 (優、良、中、須努力)
教師評 (優、良、中、須努力)
高一數學教案2
數學課堂教學
三維目標的具體內容和層次劃分
請闡述數學課堂教學三維目標的具體內容和層次劃分
知識與技能掌握應用,既是課堂教學的出發點,又是課堂教學的歸宿。教與學,都要通過知識與技能來體現的。那么,什么是三維目標內容呢?
所謂三維目標是是指:“知識與技能”,“過程和方法”、“情感、態度、價值觀”。
知識與技能:既是課堂教學的出發點,又是課堂教學的歸宿。我們在教學過程中,需要學生掌握什么,哪些些問題需要重點掌握,哪些只需簡單理解;技能是會與不會的問題。屬顯性范疇,具有可測性,大都采用定量分析與評價、知識與技能是傳統教學合理的內核,是我國傳統教育教學的優勢,應該從傳統教學中繼承與發揚。新課改不是不要雙基,而是不要過度的強調雙基,而舍棄弱化其它有價值的東西,導致非全面、不和藹的發展。
過程與方法:既是課堂教學的目標之一,又是課堂教學的操作系統!斑^程和方法”維度的目標立足于讓學生會學,新課程倡導對學與教的過程的體驗、方法的選擇,是在知識與能力目標基礎上對教學目標的進一步開發。過程與方法是一個體驗的過程、發現的過程,不但可以讓學生體驗到科學發展的過程,我們更多地要讓學生掌握過程,不一定要統一的結果。
情感、態度與價值觀:既是課堂教學的目標之一,又是課堂教學的動力系統!扒楦、態度和價值觀”,目標立足于讓學生樂學,新課程倡導對學與教的情感體驗、態度形成、價值觀的體現,是在知識與能力、過程與方法目標基礎上對教學目標深層次的'開拓,只有學生充分的認識到他們肩負的責任,就能夠激發起他們的學習熱情,他們才會有濃厚的學習興趣,才能學有所成,將來回報社會。
三維目標不是三個目標,也不是三種目標,是一個問題的三個方面。三維目標是三位一體不可分割的,他們是相輔相成的,相互促進的。
高一數學教案3
教學目的:
。1)使學生初步理解集合的概念,知道常用數集的概念及記法
。2)使學生初步了解“屬于”關系的意義
。3)使學生初步了解有限集、無限集、空集的意義
教學重點:集合的基本概念及表示方法
教學難點:運用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合
授課類型:新授課
課時安排:1課時
教 具:多媒體、實物投影儀
內容分析:
集合是中學數學的一個重要的基本概念 在小學數學中,就滲透了集合的初步概念,到了初中,更進一步應用集合的語言表述一些問題 例如,在代數中用到的有數集、解集等;在幾何中用到的有點集 至于邏輯,可以說,從開始學習數學就離不開對邏輯知識的掌握和運用,基本的邏輯知識在日常生活、學習、工作中,也是認識問題、研究問題不可缺少的工具 這些可以幫助學生認識學習本章的意義,也是本章學習的基礎把集合的初步知識與簡易邏輯知識安排在高中數學的最開始,是因為在高中數學中,這些知識與其他內容有著密切聯系,它們是學習、掌握和使用數學語言的基礎 例如,下一章講函數的概念與性質,就離不開集合與邏輯。
本節首先從初中代數與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結合實例對集合的概念作了說明 然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子。
這節課主要學習全章的引言和集合的基本概念 學習引言是引發學生的學習興趣,使學生認識學習本章的意義 本節課的教學重點是集合的基本概念集合是集合論中的原始的、不定義的概念 在開始接觸集合的概念時,主要還是通過實例,對概念有一個初步認識 教科書給出的“一般地,某些指定的對象集在一起就成為一個集合,也簡稱集 ”這句話,只是對集合概念的描述性說明。
教學過程:
一、復習引入:
1、簡介數集的發展,復習最大公約數和最小公倍數,質數與和數;
2、教材中的章頭引言;
3、集合論的創始人——康托爾(德國數學家)(見附錄);
4.“物以類聚”,“人以群分”;
5.教材中例子(P4)
二、講解新課:
閱讀教材第一部分,問題如下:
。1)有那些概念?是如何定義的?
。2)有那些符號?是如何表示的?
。3)集合中元素的特性是什么?
。ㄒ唬┘系挠嘘P概念:
由一些數、一些點、一些圖形、一些整式、一些物體、一些人組成的。我們說,每一組對象的全體形成一個集合,或者說,某些指定的'對象集在一起就成為一個集合,也簡稱集。集合中的每個對象叫做這個集合的元素。
定義:一般地,某些指定的對象集在一起就成為一個集合.
1、集合的概念
。1)集合:某些指定的對象集在一起就形成一個集合(簡稱集)
。2)元素:集合中每個對象叫做這個集合的元素
2、常用數集及記法
。1)非負整數集(自然數集):全體非負整數的集合 記作N,
。2)正整數集:非負整數集內排除0的集 記作N*或N+
。3)整數集:全體整數的集合 記作Z ,
。4)有理數集:全體有理數的集合 記作Q ,
。5)實數集:全體實數的集合 記作R
注:(1)自然數集與非負整數集是相同的,也就是說,自然數集包括數0
。2)非負整數集內排除0的集 記作N*或N+ Q、Z、R等其它數集內排除0的集,也是這樣表示,例如,整數集內排除0的集,表示成Z*
3、元素對于集合的隸屬關系
。1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A
。2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作
4、集合中元素的特性
。1)確定性:按照明確的判斷標準給定一個元素或者在這個集合里,或者不在,不能模棱兩可
。2)互異性:集合中的元素沒有重復
。3)無序性:集合中的元素沒有一定的順序(通常用正常的順序寫出)
5、⑴集合通常用大寫的拉丁字母表示,如A、B、C、P、Q……元素通常用小寫的拉丁字母表示,如a、b、c、p、q……
、啤啊省钡拈_口方向,不能把a∈A顛倒過來寫
三、練習題:
1、教材P5練習1、2
2、下列各組對象能確定一個集合嗎?
。1)所有很大的實數 (不確定)
。2)好心的人 (不確定)
。3)1,2,2,3,4,5.(有重復)
3、設a,b是非零實數,那么 可能取的值組成集合的元素是_—2,0,2__
4、由實數x,-x,|x|, 所組成的集合,最多含( A )
。ˋ)2個元素 (B)3個元素 (C)4個元素 (D)5個元素
5、設集合G中的元素是所有形如a+b (a∈Z, b∈Z)的數,求證:
。1) 當x∈N時, x∈G;
。2) 若x∈G,y∈G,則x+y∈G,而 不一定屬于集合G
證明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0,則x= x+0* = a+b ∈G,即x∈G
證明(2):∵x∈G,y∈G,
∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)
∴x+y=( a+b )+( c+d )=(a+c)+(b+d)
∵a∈Z, b∈Z,c∈Z, d∈Z
∴(a+c) ∈Z, (b+d) ∈Z
∴x+y =(a+c)+(b+d) ∈G,
又∵ =且 不一定都是整數,
∴ = 不一定屬于集合G
四、小結:本節課學習了以下內容:
1、集合的有關概念:(集合、元素、屬于、不屬于)
2、集合元素的性質:確定性,互異性,無序性
3、常用數集的定義及記法
高一數學教案4
教學目標
1.知識與技能:探索并掌握圓的標準方程,能根據方程寫出圓的坐標和圓的半徑。
2.過程與方法:通過圓的標準方程的學習,掌握求曲線方程的方法,領會數形結合的思想。
3.情感態度與價值觀:激發學生學習數學的興趣,感受學習成功的喜悅。
教學重點難點
以及措施
教學重點:圓的標準方程理解及運用
教學難點:根據不同條件,利用待定系數求圓的標準方程。
根據教學內容的特點及高一年級學生的年齡、認知特征,緊緊抓住課堂知識的結構關系,遵循“直觀認知――操作體會――感悟知識特征――應用知識”的認知過程,設計出包括:觀察、操作、思考、交流等內容的教學流程。并且充分利用現代化信息技術的教學手段提高教學效率。以此使學生獲取知識,給學生獨立操作、合作交流的機會。學法上注重讓學生參與方程的推導過程,努力拓展學生思維的空間,促其在嘗試中發現,討論中明理,合作中成功,讓學生真正體驗知識的形成過程。
學習者分析
高一年級的學生從知識層面上已經掌握了圓的相關性質;從能力層面具備了一定的觀察、分析和數據處理能力,對數學問題有自己個人的看法;從情感層面上學生思維活躍積極性高,但他們數學應用意識和語言表達的能力還有待加強。
教法設計
問題情境引入法啟發式教學法講授法
學法指導
自主學習法討論交流法練習鞏固法
教學準備
ppt課件導學案
教學環節
教學內容
教師活動
學生活動
設計意圖
情景引入
回顧復習
(2分鐘)
1.觀賞生活中有關圓的圖片
2.回顧復習圓的定義,并觀看圓的生成flash動畫。
提問:直線可以用一個方程表示,那么圓可以用一個方程表示嗎?
教師創設情景,引領學生感受圓。
教師提出問題。引導學生思考,引出本節主旨。
學生觀賞圓的圖片和動畫,思考如何表示圓的方程。
生活中的圖片展示,調動學生學習的積極性,讓學生體會到園在日常生活中的廣泛應用
自主學習
(5分鐘)
1.介紹動點軌跡方程的求解步驟:
(1)建系:在圖形中建立適當的坐標系;
(2)設點:用有序實數對(x,y)表示曲線上任意一點M的坐標;
(3)列式:用坐標表示條件P(M)的方程;
(4)化簡:對P(M)方程化簡到最簡形式;
2.學生自主學習圓的方程推導,并完成相應學案內容,
教師介紹求軌跡方程的步驟后,引導學生自學圓的標準方程
自主學習課本中圓的標準方程的推導過程,并完成導學案的內容,并當堂展示。
培養學生自主學習,獲取知識的能力
合作探究(10分鐘)
1.根據圓的標準方程說明確定圓的方程的條件有哪些?
2.點M(x0,y0)與圓(x-a)2+(y-b)2=r2的關系的判斷方法:
(1)點在圓上
(2)點在圓外
(3)點在圓內
教師引導學生分組探討,從旁巡視指導學生在自學和探討中遇到的問題,并鼓勵學生以小組為單位展示探究成果。
學生展開合作性的.探討,并陳述自己的研究成果。
通過合作探究和自我的展示,鼓勵學生合作學習的品質
當堂訓練(18分鐘)
1.求下列圓的圓心坐標和半徑
C1: x2+y2=5
C2: (x-3)2+y2=4
C3: x2+(y+1)2=a2(a≠0)
2.以C(4,-6)為圓心,半徑等于3的圓的標準方程
3.設圓(x-a)2+(y-b)2=r2
則坐標原點的位置是( )
A.在圓外B.在圓上
C.在圓內D.與a的取值有關
4.寫出下列各圓的標準方程(1)圓心在原點,半徑等于5
(2)經過點P(5,1),圓心在點C(6,-2);
(3)以A(2,5),B(0,-1)為直徑的圓.
5.下列方程分別表示什么圖形
(1) x2+y2=0
(2) (x-1)2 =8-(y+2)2
(3) 《圓的標準方程》教學設計-賈偉
6.鞏固提升:已知圓心為C的圓經過點A(1,1)和B(2,-2),且圓心在直線l:x-y+1=0上,求圓C的標準方程并作圖
指導學生就不同條件下給出的圓心和半徑關系,求解圓的標準方程這兩個要素展開訓練。
學生自主開展訓練,并糾正學習中所遇到的問題
鞏固所學知識,并查缺補漏。
回顧小結
(1分鐘)
1.你學到了哪些知識?
2.你掌握了哪些技能?
3.你體會到了哪些數學思想?
采用提問的形式幫助學生回顧和分析本節所學。
學生思考并從知識、技能和思想方法上回顧總結。
培養學生歸納總結能力
作業布置
(1分鐘)
課本87頁習題2-2
A組的第1道題
布置訓練任務
標記并完成相應的任務
檢測學生掌握知識情況。
教學反思
本節教學主要遵循“回-導-學-展-講-練-結”的高效課堂教學模式,遵循學生學習的主體地位,鼓勵學生自主思考和探討。
教學中要積極鼓勵學生多思考總結,在判斷點與圓的位置關系中,要遵從學生個性化的發展思路,鼓勵學生創造性的解決問題。
高一數學教案5
教學目標
1.理解等比數列的概念,掌握等比數列的通項公式,并能運用公式解決簡單的問題.
。1)正確理解等比數列的定義,了解公比的概念,明確一個數列是等比數列的限定條件,能根據定義判斷一個數列是等比數列,了解等比中項的概念;
。2)正確認識使用等比數列的表示法,能靈活運用通項公式求等比數列的首項、公比、項數及指定的項;
。3)通過通項公式認識等比數列的性質,能解決某些實際問題.
2.通過對等比數列的研究,逐步培養學生觀察、類比、歸納、猜想等思維品質.
3.通過對等比數列概念的歸納,進一步培養學生嚴密的思維習慣,以及實事求是的科學態度.
教學建議
教材分析
。1)知識結構
等比數列是另一個簡單常見的數列,研究內容可與等差數列類比,首先歸納出等比數列的定義,導出通項公式,進而研究圖像,又給出等比中項的概念,最后是通項公式的應用.
。2)重點、難點分析
教學重點是等比數列的定義和對通項公式的認識與應用,教學難點在于等比數列通項公式的推導和運用.
、倥c等差數列一樣,等比數列也是特殊的數列,二者有許多相同的性質,但也有明顯的區別,可根據定義與通項公式得出等比數列的特性,這些是教學的重點.
、陔m然在等差數列的學習中曾接觸過不完全歸納法,但對學生來說仍然不熟悉;在推導過程中,需要學生有一定的觀察分析猜想能力;第一項是否成立又須補充說明,所以通項公式的推導是難點.
、蹖Φ炔顢盗、等比數列的綜合研究離不開通項公式,因而通項公式的靈活運用既是重點又是難點.
教學建議
。1)建議本節課分兩課時,一節課為等比數列的概念,一節課為等比數列通項公式的應用.
。2)等比數列概念的引入,可給出幾個具體的例子,由學生概括這些數列的相同特征,從而得到等比數列的定義.也可將幾個等差數列和幾個等比數列混在一起給出,由學生將這些數列進行分類,有一種是按等差、等比來分的,由此對比地概括等比數列的定義.
。3)根據定義讓學生分析等比數列的公比不為0,以及每一項均不為0的特性,加深對概念的理解.
。4)對比等差數列的表示法,由學生歸納等比數列的各種表示法. 啟發學生用函數觀點認識通項公式,由通項公式的結構特征畫數列的圖象.
。5)由于有了等差數列的研究經驗,等比數列的研究完全可以放手讓學生自己解決,教師只需把握課堂的節奏,作為一節課的組織者出現.
。6)可讓學生相互出題,解題,講題,充分發揮學生的主體作用.
教學設計示例
課題:等比數列的概念
教學目標
1.通過教學使學生理解等比數列的概念,推導并掌握通項公式.
2.使學生進一步體會類比、歸納的思想,培養學生的觀察、概括能力.
3.培養學生勤于思考,實事求是的精神,及嚴謹的科學態度.
教學重點,難點
重點、難點是等比數列的定義的歸納及通項公式的推導.
教學用具
投影儀,多媒體軟件,電腦.
教學方法
討論、談話法.
教學過程
一、提出問題
給出以下幾組數列,將它們分類,說出分類標準.(幻燈片)
、伲2,1,4,7,10,13,16,19,…
、8,16,32,64,128,256,…
、1,1,1,1,1,1,1,…
、243,81,27,9,3,1, , ,…
、31,29,27,25,23,21,19,…
、1,-1,1,-1,1,-1,1,-1,…
、1,-10,100,-1000,10000,-100000,…
、0,0,0,0,0,0,0,…
由學生發表意見(可能按項與項之間的關系分為遞增數列、遞減數列、常數數列、擺動數列,也可能分為等差、等比兩類),統一一種分法,其中②③④⑥⑦為有共同性質的一類數列(學生看不出③的情況也無妨,得出定義后再考察③是否為等比數列).
二、講解新課
請學生說出數列②③④⑥⑦的共同特性,教師指出實際生活中也有許多類似的例子,如變形蟲分裂問題.假設每經過一個單位時間每個變形蟲都分裂為兩個變形蟲,再假設開始有一個變形蟲,經過一個單位時間它分裂為兩個變形蟲,經過兩個單位時間就有了四個變形蟲,…,一直進行下去,記錄下每個單位時間的變形蟲個數得到了一列數 這個數列也具有前面的幾個數列的共同特性,這是我們將要研究的另一類數列——等比數列. (這里播放變形蟲分裂的多媒體軟件的第一步)
等比數列(板書)
1.等比數列的定義(板書)
根據等比數列與等差數列的'名字的區別與聯系,嘗試給等比數列下定義.學生一般回答可能不夠完美,多數情況下,有了等差數列的基礎是可以由學生概括出來的.教師寫出等比數列的定義,標注出重點詞語.
請學生指出等比數列②③④⑥⑦各自的公比,并思考有無數列既是等差數列又是等比數列.學生通過觀察可以發現③是這樣的數列,教師再追問,還有沒有其他的例子,讓學生再舉兩例.而后請學生概括這類數列的一般形式,學生可能說形如 的數列都滿足既是等差又是等比數列,讓學生討論后得出結論:當 時,數列 既是等差又是等比數列,當 時,它只是等差數列,而不是等比數列.教師追問理由,引出對等比數列的認識:
2.對定義的認識(板書)
。1)等比數列的首項不為0;
。2)等比數列的每一項都不為0,即 ;
問題:一個數列各項均不為0是這個數列為等比數列的什么條件?
。3)公比不為0.
用數學式子表示等比數列的定義.
是等比數列 ①.在這個式子的寫法上可能會有一些爭議,如寫成 ,可讓學生研究行不行,好不好;接下來再問,能否改寫為 是等比數列 ?為什么不能?
式子 給出了數列第 項與第 項的數量關系,但能否確定一個等比數列?(不能)確定一個等比數列需要幾個條件?當給定了首項及公比后,如何求任意一項的值?所以要研究通項公式.
3.等比數列的通項公式(板書)
問題:用 和 表示第 項 .
、俨煌耆珰w納法
、诏B乘法
,… , ,這 個式子相乘得 ,所以 .
。ò鍟1)等比數列的通項公式
得出通項公式后,讓學生思考如何認識通項公式.
。ò鍟2)對公式的認識
由學生來說,最后歸結:
、俸瘮涤^點;
、诜匠趟枷耄ㄒ蛟诘炔顢盗兄幸延姓J識,此處再復習鞏固而已).
這里強調方程思想解決問題.方程中有四個量,知三求一,這是公式最簡單的應用,請學生舉例(應能編出四類問題).解題格式是什么?(不僅要會解題,還要注意規范表述的訓練)
如果增加一個條件,就多知道了一個量,這是公式的更高層次的應用,下節課再研究.同學可以試著編幾道題.
三、小結
1.本節課研究了等比數列的概念,得到了通項公式;
2.注意在研究內容與方法上要與等差數列相類比;
3.用方程的思想認識通項公式,并加以應用.
高一數學教案6
1.1 集合含義及其表示
教學目標:理解集合的概念;掌握集合的三種表示方法,理解集合中元素的三性及元素與集合的關系;掌握有關符號及術語。
教學過程:
一、閱讀下列語句:
1) 全體自然數0,1,2,3,4,5,
2) 代數式 .
3) 拋物線 上所有的點
4) 今年本校高一(1)(或(2))班的全體學生
5) 本校實驗室的所有天平
6) 本班級全體高個子同學
7) 著名的科學家
上述每組語句所描述的對象是否是確定的?
二、1)集合:
2)集合的元素:
3)集合按元素的個數分,可分為1)__________2)_________
三、集合中元素的三個性質:
1)___________2)___________3)_____________
四、元素與集合的關系:1)____________2)____________
五、特殊數集專用記號:
1)非負整數集(或自然數集)______2)正整數集_____3)整數集_______
4)有理數集______5)實數集_____ 6)空集____
六、集合的表示方法:
1)
2)
3)
七、例題講解:
例1、 中三個元素可構成某一個三角形的三邊長,那么此三角形一定不是 ( )
A,直角三角形 B,銳角三角形 C,鈍角三角形 D,等腰三角形
例2、用適當的方法表示下列集合,然后說出它們是有限集還是無限集?
1)地球上的四大洋構成的集合;
2)函數 的全體 值的集合;
3)函數 的全體自變量 的集合;
4)方程組 解的集合;
5)方程 解的.集合;
6)不等式 的解的集合;
7)所有大于0且小于10的奇數組成的集合;
8)所有正偶數組成的集合;
例3、用符號 或 填空:
1) ______Q ,0_____N, _____Z,0_____
2) ______ , _____
3)3_____ ,
4)設 , , 則
例4、用列舉法表示下列集合;
1.
2.
3.
4.
例5、用描述法表示下列集合
1.所有被3整除的數
2.圖中陰影部分點(含邊界)的坐標的集合
課堂練習:
例6、設含有三個實數的集合既可以表示為 ,也可以表示為 ,則 的值等于___________
例7、已知: ,若 中元素至多只有一個,求 的取值范圍。
思考題:數集A滿足:若 ,則 ,證明1):若2 ,則集合中還有另外兩個元素;2)若 則集合A不可能是單元素集合。
小結:
作業 班級 姓名 學號
1. 下列集合中,表示同一個集合的是 ( )
A . M= ,N= B. M= ,N=
C. M= ,N= D. M= ,N=
2. M= ,X= ,Y= , , .則 ( )
A . B. C. D.
3. 方程組 的解集是____________________.
4. 在(1)難解的題目,(2)方程 在實數集內的解,(3)直角坐標平面內第四象限的一些點,(4)很多多項式。能夠組成集合的序號是________________.
5. 設集合 A= , B= ,
C= , D= ,E= 。
其中有限集的個數是____________.
6. 設 ,則集合 中所有元素的和為
7. 設x,y,z都是非零實數,則用列舉法將 所有可能的值組成的集合表示為
8. 已知f(x)=x2-ax+b,(a,b R),A= ,B= ,
若A= ,試用列舉法表示集合B=
9. 把下列集合用另一種方法表示出來:
(1) (2)
(3) (4)
10. 設a,b為整數,把形如a+b 的一切數構成的集合記為M,設 ,試判斷x+y,x-y,xy是否屬于M,說明理由。
11. 已知集合A=
(1) 若A中只有一個元素,求a的值,并求出這個元素;
(2) 若A中至多只有一個元素,求a的取值集合。
12.若-3 ,求實數a的值。
【總結】20xx年已經到來,新的一年數學網會為您整理更多更好的文章,希望本文高一數學教案:集合含義及其表示能給您帶來幫助!
高一數學教案7
教學目標
1、應用正弦余弦定理解斜三角形應用題的一般步驟及基本思路
(1)分析,(2)建模,(3)求解,(4)檢驗;
2、實際問題中的有關術語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時針轉到目標方向線的夾角;
(3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實際問題的常見題型有:
測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;
教學重難點
1、應用正弦余弦定理解斜三角形應用題的一般步驟及基本思路
(1)分析,(2)建模,(3)求解,(4)檢驗;
2、實際問題中的有關術語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時針轉到目標方向線的夾角;
(3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實際問題的常見題型有:
測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;
教學過程
一、知識歸納
1、應用正弦余弦定理解斜三角形應用題的一般步驟及基本思路
(1)分析,(2)建模,(3)求解,(4)檢驗;
2、實際問題中的'有關術語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時針轉到目標方向線的夾角;
(3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實際問題的常見題型有:
測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;
二、例題討論
一)利用方向角構造三角形
四)測量角度問題
例4、在一個特定時段內,以點E為中心的7海里以內海域被設為警戒水域.點E正北55海里處有一個雷達觀測站A.某時刻測得一艘勻速直線行駛的船只位于點A北偏東。
高一數學教案8
教學目標:
1.進一步理解對數函數的性質,能運用對數函數的相關性質解決對數型函數的常見問題.
2.培養學生數形結合的思想,以及分析推理的能力.
教學重點:
對數函數性質的應用.
教學難點:
對數函數的性質向對數型函數的演變延伸.
教學過程:
一、問題情境
1.復習對數函數的性質.
2.回答下列問題.
(1)函數y=log2x的.值域是 ;
(2)函數y=log2x(x≥1)的值域是 ;
(3)函數y=log2x(0
3.情境問題.
函數y=log2(x2+2x+2)的定義域和值域分別如何求呢?
二、學生活動
探究完成情境問題.
三、數學運用
例1 求函數y=log2(x2+2x+2)的定義域和值域.
練習:
(1)已知函數y=log2x的值域是[-2,3],則x的范圍是________________.
(2)函數 ,x(0,8]的值域是 .
(3)函數y=log (x2-6x+17)的值域 .
(4)函數 的值域是_______________.
例2 判斷下列函數的奇偶性:
(1)f (x)=lg (2)f (x)=ln( -x)
例3 已知loga 0.75>1,試求實數a 取值范圍.
例4 已知函數y=loga(1-ax)(a>0,a≠1).
(1)求函數的定義域與值域;
(2)求函數的單調區間.
練習:
1.下列函數(1) y=x-1;(2) y=log2(x-1);(3) y= ;(4)y=lnx,其中值域為R的有 (請寫出所有正確結論的序號).
2.函數y=lg( -1)的圖象關于 對稱.
3.已知函數 (a>0,a≠1)的圖象關于原點對稱,那么實數m= .
4.求函數 ,其中x [ ,9]的值域.
四、要點歸納與方法小結
(1)借助于對數函數的性質研究對數型函數的定義域與值域;
(2)換元法;
(3)能畫出較復雜函數的圖象,根據圖象研究函數的性質(數形結合).
五、作業
課本P70~71-4,5,10,11.
高一數學教案9
1、知識與技能
(1)掌握任意角的正弦、余弦、正切的定義(包括這三種三角函數的定義域和函數值在各象限的符號);
(2)理解任意角的三角函數不同的定義方法;
(3)了解如何利用與單位圓有關的有向線段,將任意角α的正弦、余弦、正切函數值分別用正弦線、余弦線、正切線表示出來;
(4)掌握并能初步運用公式一;
(5)樹立映射觀點,正確理解三角函數是以實數為自變量的函數.
2、過程與方法
初中學過:銳角三角函數就是以銳角為自變量,以比值為函數值的函數.引導學生把這個定義推廣到任意角,通過單位圓和角的終邊,探討任意角的三角函數值的求法,最終得到任意角三角函數的定義.根據角終邊所在位置不同,分別探討各三角函數的定義域以及這三種函數的值在各象限的符號.最后主要是借助有向線段進一步認識三角函數.講解例題,總結方法,鞏固練習.
3、情態與價值
任意角的三角函數可以有不同的定義方法,而且各種定義都有自己的特點.過去習慣于用角的終邊上點的坐標的“比值”來定義,這種定義方法能夠表現出從銳角三角函數到任意角的三角函數的推廣,有利于引導學生從自己已有認知基礎出發學習三角函數,但它對準確把握三角函數的本質有一定的不利影響,“從角的集合到比值的集合”的對應關系與學生熟悉的一般函數概念中的“數集到數集”的對應關系有沖突,而且“比值”需要通過運算才能得到,這與函數值是一個確定的實數也有不同,這些都會影響學生對三角函數概念的理解.
本節利用單位圓上點的坐標定義任意角的正弦函數、余弦函數.這個定義清楚地表明了正弦、余弦函數中從自變量到函數值之間的`對應關系,也表明了這兩個函數之間的關系.
教學重難點
重點:任意角的正弦、余弦、正切的定義(包括這三種三角函數的定義域和函數值在各象限的符號);終邊相同的角的同一三角函數值相等(公式一).
難點:任意角的正弦、余弦、正切的定義(包括這三種三角函數的定義域和函數值在各象限的符號);三角函數線的正確理解.
高一數學教案10
學 習 目 標
1明確空間直角坐標系是如何建立;明確空間中任意一點如何表示;
2 能夠在空間直角坐標系中求出點坐標
教 學 過 程
一 自 主 學 習
1平面直角坐標系建立方法,點坐標確定過程、表示方法?
2一個點在平面怎么表示?在空間呢?
3關于一些對稱點坐標求法
關于坐標平面 對稱點 ;
關于坐標平面 對稱點 ;
關于坐標平面 對稱點 ;
關于 軸對稱點 ;
關于 對軸稱點 ;
關于 軸對稱點 ;
二 師 生 互動
例1在長方體 中, , 寫出 四點坐標
討論:若以 點為原點,以射線 方向分別為 軸,建立空間直角坐標系,則各頂點坐標又是怎樣呢?
變式:已知 ,描出它在空間位置
例2 為正四棱錐, 為底面中心,若 ,試建立空間直角坐標系,并確定各頂點坐標
練1 建立適當直角坐標系,確定棱長為3正四面體各頂點坐標
練2 已知 是棱長為2正方體, 分別為 和 中點,建立適當空間直角坐標系,試寫出圖中各中點坐標
三 鞏 固 練 習
1 關于空間直角坐標系敘述正確是( )
A 中 位置是可以互換
B空間直角坐標系中點與一個三元有序數組是一種一一對應關系
C空間直角坐標系中三條坐標軸把空間分為八個部分
D某點在不同空間直角坐標系中坐標位置可以相同
2 已知點 ,則點 關于原點對稱點坐標為( )
A B C D
3 已知 三個頂點坐標分別為 ,則 重心坐標為( )
A B C D
4 已知 為平行四邊形,且 , 則頂點 坐標
5 方程 幾何意義是
四 課 后 反 思
五 課 后 鞏 固 練 習
1 在空間直角坐標系中,給定點 ,求它分別關于坐標平面,坐標軸和原點對稱點坐標
2 設有長方體 ,長、寬、高分別為 是線段 中點分別以 所在直線為 軸, 軸, 軸,建立空間直角坐標系
、徘 坐標;
、魄 坐標;
高一數學教案11
教材:邏輯聯結詞
目的:要求學生了解復合命題的意義,并能指出一個復合命題是有哪些簡單命題與邏輯聯結詞,并能由簡單命題構成含有邏輯聯結詞的復合命題。
過程:
一、提出課題:簡單邏輯、邏輯聯結詞
二、命題的概念:
例:125 ① 3是12的約數 ② 0.5是整數 ③
定義:可以判斷真假的語句叫命題。正確的叫真命題,錯誤的叫假命題。
如:①②是真命題,③是假命題
反例:3是12的約數嗎? x5 都不是命題
不涉及真假(問題) 無法判斷真假
上述①②③是簡單命題。 這種含有變量的語句叫開語句(條件命題)。
三、復合命題:
1.定義:由簡單命題再加上一些邏輯聯結詞構成的命題叫復合命題。
2.例:
(1)10可以被2或5整除④ 10可以被2整除或10可以被5整除
(2)菱形的對角線互相 菱形的對角線互相垂直且菱形的
垂直且平分⑤ 對角線互相平分
(3)0.5非整數⑥ 非0.5是整數
觀察:形成概念:簡單命題在加上或且非這些邏輯聯結詞成復合命題。
3.其實,有些概念前面已遇到過
如:或:不等式 x2x60的解集 { x | x2或x3 }
且:不等式 x2x60的解集 { x | 23 } 即 { x | x2且x3 }
四、復合命題的`構成形式
如果用 p, q, r, s表示命題,則復合命題的形式接觸過的有以下三種:
即: p或q (如 ④) 記作 pq
p且q (如 ⑤) 記作 pq
非p (命題的否定) (如 ⑥) 記作 p
小結:1.命題 2.復合命題 3.復合命題的構成形式
高一數學教案12
一、學習目標:
知識與技能:理解直線與平面、平面與平面平行的性質定理的含義, 并會應用性質解決問題
過程與方法:能應用文字語言、符號語言、圖形語言準確地描述直線與平面、平面與平面的性質定理
情感態度與價值觀:通過自主學習、主動參與、積極探究的學習過程,激發學生學習數學的自信心和積極性,培養學生良好的思維習慣,滲透化歸與轉化的數學思想,體會事物之間相互轉化和理論聯系實際的辯證唯物主義思想方法
二、學習重、難點
學習重點: 直線與平面、平面與平面平行的性質及其應用
學習難點: 將空間問題轉化為平面問題的方法,
三、學法指導及要求:
1、限定45分鐘完成,注意逐字逐句仔細審題,認真思考、獨立規范作答,不會的先繞過,做好記號。
2、把學案中自己易忘、易出錯的知識點和疑難問題以及解題方法規律,及時整理在解題本,多復習記憶。3、A:自主學習;B:合作探究;C:能力提升4、小班、重點班完成全部,平行班完成A.B類題
四、知識鏈接:
1.空間直線與直線的位置關系
2.直線與平面的位置關系
3.平面與平面的位置關系
4.直線與平面平行的判定定理的符號表示
5.平面與平面平行的判定定理的符號表示
五、學習過程:
A問題1:
1)如果一條直線與一個平面平行,那么這條直線與這個平面內的直線有哪些位置關系?
(觀察長方體)
2)如果一條直線和一個平面平行,如何在這個平面內做一條直線與已知直線平行?
(可觀察教室內燈管和地面)
A問題2: 一條直線與平面平行,這條直線和這個平面內直線的位置關系有幾種可能?
A問題3:如果一條直線 與平面平行,在什么條件下直線 與平面內的直線平行呢?
由于直線 與平面內的任何直線無公共點,所以過直線 的某一平面,若與平面相交,則直線 就平行于這條交線
B自主探究1:已知: ∥, ,=b。求證: ∥b。
直線與平面平行的.性質定理:一條直線與一個平面平行,則過這條直線的任一平面與此平面的交線與該直線平行
符號語言:
線面平行性質定理作用:證明兩直線平行
思想:線面平行 線線平行
例1:有一塊木料如圖,已知棱BC平行于面AC(1)要經過木料表面ABCD 內的一點P和棱BC將木料鋸開,應怎樣畫線?(2)所畫的線和面AC有什么關系?
例2:已知平面外的兩條平行直線中的一條平行于這個平面,求證:另一條也平行于這個平面。
問題5:兩個平面平行,那么其中一個平面內的直線與另一平面有什么樣的關系?兩個平面平行,那么其中一個平面內的直線與另一平面內的直線有何關系?
自主探究2:如圖,平面,,滿足∥,=a,=b,求證:a∥b
平面與平面平行的性質定理:如果兩個平行平面同時和第三個平面相交,那么它們的交線平行
符號語言:
面面平行性質定理作用:證明兩直線平行
思想:面面平行 線線平行
例3 求證:夾在兩個平行平面間的平行線段相等
六、達標檢測:
A1.61頁練習
A2.下列判斷正確的是( )
A. ∥, ,則 ∥b B. =P,b ,則 與b不平行
C. ,則a∥ D. ∥,b∥,則 ∥b
B3.直線 ∥平面,P,過點P平行于 的直線( )
A.只有一條,不在平面內 B.有無數條,不一定在內
C.只有一條,且在平面內 D.有無數條,一定在內
B4.下列命題錯誤的是 ( )
A. 平行于同一條直線的兩個平面平行或相交
B. 平行于同一個平面的兩個平面平行
C. 平行于同一條直線的兩條直線平行
D. 平行于同一個平面的兩條直線平行或相交
B5. 平行四邊形EFGH的四個頂點E、F、G、H、分別在空間四邊形ABCD的四條邊AB、BC、CD、AD、上,又EF∥BD,則 ( )
A. EH∥BD,BD不平行與FG
B. FG∥BD,EH不平行于BD
C. EH∥BD,FG∥BD
D. 以上都不對
B6.若直線 ∥b, ∥平面,則直線b與平面的位置關系是
B7一個平面上有兩點到另一個平面的距離相等,則這兩個平面
七、小結與反思:
高一數學教案13
一、課標要求:
理解充分條件、必要條件與充要條件的意義,會判斷充分條件、必要條件與充要條件.
二、知識與方法回顧:
1、充分條件、必要條件與充要條件的概念:
2、從邏輯推理關系上看充分不必要條件、必要不充分條件與充要條件:
3、從集合與集合之間關系上看充分條件、必要條件與充要條件:
4、特殊值法:判斷充分條件與必要條件時,往往用特殊值法來否定結論
5、化歸思想:
表示p等價于q,等價命題可以進行相互轉化,當我們要證明p成立時,就可以轉化為證明q成立;
這里要注意原命題 逆否命題、逆命題 否命題只是等價形式之一,對于條件或結論是不等式關系(否定式)的命題一般應用化歸思想.
6、數形結合思想:
利用韋恩圖(即集合的包含關系)來判斷充分不必要條件,必要不充分條件,充要條件.
三、基礎訓練:
1、 設命題若p則q為假,而若q則p為真,則p是q的 ( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
2、 設集合M,N為是全集U的兩個子集,則 是 的 ( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
3、 若 是實數,則 是 的 ( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
四、例題講解
例1 已知實系數一元二次方程 ,下列結論中正確的是 ( )
(1) 是這個方程有實根的充分不必要條件
(2) 是這個方程有實根的`必要不充分條件
(3) 是這個方程有實根的充要條件
(4) 是這個方程有實根的充分不必要條件
A.(1)(3) B.(3)(4) C.(1)(3)(4) D.(2)(3)(4)
例2 (1)已知h 0,a,bR,設命題甲: ,命題乙: 且 ,問甲是乙的 ( )
(2)已知p:兩條直線的斜率互為負倒數,q:兩條直線互相垂直,則p是q的 ( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
變式:a = 0是直線 與 平行的 條件;
例3 如果命題p、q都是命題r的必要條件,命題s是命題r的充分條件,命題q是命題s
的充分條件,那么命題p是命題q的 條件;命題s是命題q的 條件;命題r是命題q的 條件.
例4 設命題p:|4x-3| 1,命題q:x2-(2a+1)x+a(a+1) 0,若﹁p是﹁q的必要不充分條件,求實數a的取值范圍;
例5 設 是方程 的兩個實根,試分析 是兩實根 均大于1的什么條件?并給予證明.
五、課堂練習
1、設命題p: ,命題q: ,則p是q的 ( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
2、給出以下四個命題:①若p則q②若﹁r則﹁q③ 若r則﹁s
、苋籀鑣則q若它們都是真命題,則﹁p是s的 條件;
3、是否存在實數p,使 是 的充分條件?若存在,求出p的取值范圍;若不存在說明理由.
六、課堂小結:
七、教學后記:
高三 班 學號 姓名 日期: 月 日
1、 A B是AB=B的 ( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
2、 是 的 ( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
3、 2x2-5x-30的一個必要不充分條件是 ( )
A.-
4、2且b是a+b4且ab的 ( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
5、設a1、b1、c1、a2、b2、c2均為非零實數,不等式a1x2+b1x+c10和a2x2+b2x+c20的解集分別為集合M和N,那么 是 M=N 的 ( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分又不必要條件
6、若命題A: ,命題B: ,則命題A是B的 條件;
7、設條件p:|x|=x,條件q:x2-x,則p是q的 條件;
8、方程mx2+2x+1=0至少有一個負根的充要條件是 ;
9、關于x的方程x2+mx+n = 0有兩個小于1的正根的一個充要條件是 ;
10、已知 ,求證: 的充要條件是 ;
11、已知p:-210,q:1-m1+m,若﹁p是﹁q的必要不充分條件,求實數m的取值范圍。
12、已知關于x的方程(1-a)x2+(a+2)x-4=0,aR,求:
(1)方程有兩個正根的充要條件;
(2)方程至少有一正根的充要條件.
高一數學教案14
教學目標
1.了解函數的單調性和奇偶性的概念,掌握有關證明和判斷的基本方法.
(1)了解并區分增函數,減函數,單調性,單調區間,奇函數,偶函數等概念.
(2)能從數和形兩個角度認識單調性和奇偶性.
(3)能借助圖象判斷一些函數的單調性,能利用定義證明某些函數的單調性;能用定義判斷某些函數的奇偶性,并能利用奇偶性簡化一些函數圖象的繪制過程.
2.通過函數單調性的證明,提高學生在代數方面的推理論證能力;通過函數奇偶性概念的形成過程,培養學生的觀察,歸納,抽象的能力,同時滲透數形結合,從特殊到一般的數學思想.
3.通過對函數單調性和奇偶性的理論研究,增學生對數學美的體驗,培養樂于求索的精神,形成科學,嚴謹的研究態度.
教學建議
一、知識結構
(1)函數單調性的概念。包括增函數、減函數的定義,單調區間的概念函數的單調性的判定方法,函數單調性與函數圖像的關系.
(2)函數奇偶性的概念。包括奇函數、偶函數的定義,函數奇偶性的判定方法,奇函數、偶函數的圖像.
二、重點難點分析
(1)本節教學的重點是函數的單調性,奇偶性概念的形成與認識.教學的難點是領悟函數單調性, 奇偶性的本質,掌握單調性的證明.
(2)函數的單調性這一性質學生在初中所學函數中曾經了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現在要求把它上升到理論的'高度,用準確的數學語言去刻畫它.這種由形到數的翻譯,從直觀到抽象的轉變對高一的學生來說是比較困難的,因此要在概念的形成上重點下功夫.單調性的證明是學生在函數內容中首次接觸到的代數論證內容,學生在代數論證推理方面的能力是比較弱的,許多學生甚至還搞不清什么是代數證明,也沒有意識到它的重要性,所以單調性的證明自然就是教學中的難點.
三、教法建議
(1)函數單調性概念引入時,可以先從學生熟悉的一次函數,,二次函數.反比例函數圖象出發,回憶圖象的增減性,從這點感性認識出發,通過問題逐步向抽象的定義靠攏.如可以設計這樣的問題:圖象怎么就升上去了?可以從點的坐標的角度,也可以從自變量與函數值的關系的角度來解釋,引導學生發現自變量與函數值的的變化規律,再把這種規律用數學語言表示出來.在這個過程中對一些關鍵的詞語(某個區間,任意,都有)的理解與必要性的認識就可以融入其中,將概念的形成與認識結合起來.
(2)函數單調性證明的步驟是嚴格規定的,要讓學生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時,讓學生明確變換的目標,到什么程度就可以斷號,在例題的選擇上應有不同的變換目標為選題的標準,以便幫助學生總結規律.
函數的奇偶性概念引入時,可設計一個課件,以的圖象為例,讓自變量互為相反數,觀察對應的函數值的變化規律,先從具體數值開始,逐漸讓在數軸上動起來,觀察任意性,再讓學生把看到的用數學表達式寫出來.經歷了這樣的過程,再得到等式時,就比較容易體會它代表的是無數多個等式,是個恒等式.關于定義域關于原點對稱的問題,也可借助課件將函數圖象進行多次改動,幫助學生發現定義域的對稱性,同時還可以借助圖象說明定義域關于原點對稱只是函數具備奇偶性的必要條件而不是充分條件.
高一數學教案15
【摘要】鑒于大家對數學網十分關注,小編在此為大家整理了此文空間幾何體的三視圖和直觀圖高一數學教案,供大家參考!
本文題目:空間幾何體的三視圖和直觀圖高一數學教案
第一課時 1.2.1中心投影與平行投影 1.2.2空間幾何體的三視圖
教學要求:能畫出簡單幾何體的三視圖;能識別三視圖所表示的空間幾何體.
教學重點:畫出三視圖、識別三視圖.
教學難點:識別三視圖所表示的空間幾何體.
教學過程:
一、新課導入:
1. 討論:能否熟練畫出上節所學習的幾何體?工程師如何制作工程設計圖紙?
2. 引入:從不同角度看廬山,有古詩:橫看成嶺側成峰,遠近高低各不同。不識廬山真面目,只緣身在此山中。 對于我們所學幾何體,常用三視圖和直觀圖來畫在紙上.
三視圖:觀察者從不同位置觀察同一個幾何體,畫出的空間幾何體的圖形;
直觀圖:觀察者站在某一點觀察幾何體,畫出的空間幾何體的圖形.
用途:工程建設、機械制造、日常生活.
二、講授新課:
1. 教學中心投影與平行投影:
、 投影法的提出:物體在光線的照射下,就會在地面或墻壁上產生影子。人們將這種自然現象加以科學的抽象,總結其中的規律,提出了投影的方法。
、 中心投影:光由一點向外散射形成的投影。其投影的大小隨物體與投影中心間距離的變化而變化,所以其投影不能反映物體的實形.
、 平行投影:在一束平行光線照射下形成的投影. 分正投影、斜投影.
討論:點、線、三角形在平行投影后的結果.
2. 教學柱、錐、臺、球的三視圖:
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右)、俯視圖
討論:三視圖與平面圖形的關系? 畫出長方體的三視圖,并討論所反應的長、寬、高
結合球、圓柱、圓錐的模型,從正面(自前而后)、側面(自左而右)、上面(自上而下)三個角度,分別觀察,畫出觀察得出的各種結果. 正視圖、側視圖、俯視圖.
、 試畫出:棱柱、棱錐、棱臺、圓臺的三視圖. (
、 討論:三視圖,分別反應物體的哪些關系(上下、左右、前后)?哪些數量(長、寬、高)
正視圖反映了物體上下、左右的位置關系,即反映了物體的高度和長度;
俯視圖反映了物體左右、前后的位置關系,即反映了物體的長度和寬度;
側視圖反映了物體上下、前后的位置關系,即反映了物體的高度和寬度。
、 討論:根據以上的三視圖,如何逆向得到幾何體的`形狀.
(試變化以上的三視圖,說出相應幾何體的擺放)
3. 教學簡單組合體的三視圖:
、 畫出教材P16 圖(2)、(3)、(4)的三視圖.
、 從教材P16思考中三視圖,說出幾何體.
4. 練習:
、 畫出正四棱錐的三視圖.
畫出右圖所示幾何體的三視圖.
、 右圖是一個物體的正視圖、左視圖和俯視圖,試描述該物體的形狀.
5. 小結:投影法;三視圖;順與逆
三、鞏固練習: 練習:教材P17 1、2、3、4
第二課時 1.2.3 空間幾何體的直觀圖
教學要求:掌握斜二測畫法;能用斜二測畫法畫空間幾何體的直觀圖.
教學重點:畫出直觀圖.
【高一數學教案】相關文章:
高一優秀數學教案09-28
高一數學教案11-05
人教版高一數學教案06-10
高一數學教案數列12-29
高一數學教案函數12-28
高一數學教案【精】11-29
高一數學教案【推薦】11-30
【精】高一數學教案12-01
【薦】高一數學教案11-27
高一數學教案【熱門】11-28