• <i id="549yd"></i>
  • 
    
  • 現在位置:范文先生網>教案大全>數學教案>八年級數學教案>八年級數學教案

    八年級數學教案

    時間:2022-04-25 14:45:34 八年級數學教案 我要投稿

    八年級數學教案模板集合七篇

      作為一名為他人授業解惑的教育工作者,往往需要進行教案編寫工作,教案有利于教學水平的提高,有助于教研活動的開展。那么你有了解過教案嗎?以下是小編收集整理的八年級數學教案7篇,希望能夠幫助到大家。

    八年級數學教案模板集合七篇

    八年級數學教案 篇1

      一、課堂引入

      1.什么叫做平行四邊形?什么叫做矩形?

      2.矩形有哪些性質?

      3.矩形與平行四邊形有什么共同之處?有什么不同之處?

      4.事例引入:小華想要做一個矩形像框送給媽媽做生日禮物,于是找來兩根長度相等的短木條和兩根長度相等的長木條制作,你有什么辦法可以檢測他做的是矩形像框嗎?看看誰的方法可行?

      通過討論得到矩形的判定方法.

      矩形判定方法1:對角錢相等的平行四邊形是矩形.

      矩形判定方法2:有三個角是直角的四邊形是矩形.

     。ㄖ赋觯号卸ㄒ粋四邊形是矩形,知道三個角是直角,條件就夠了.因為由四邊形內角和可知,這時第四個角一定是直角.)

      二、例習題分析

      例1(補充)下列各句判定矩形的說法是否正確?為什么?

     。1)有一個角是直角的四邊形是矩形;(×)

     。2)有四個角是直角的四邊形是矩形;(√)

     。3)四個角都相等的四邊形是矩形;(√)

     。4)對角線相等的四邊形是矩形;(×)

     。5)對角線相等且互相垂直的四邊形是矩形;(×)

     。6)對角線互相平分且相等的四邊形是矩形;(√)

     。7)對角線相等,且有一個角是直角的四邊形是矩形;(×)

     。8)一組鄰邊垂直,一組對邊平行且相等的四邊形是矩形;(√)

     。9)兩組對邊分別平行,且對角線相等的四邊形是矩形.(√)

      指出:

     。╨)所給四邊形添加的條件不滿足三個的肯定不是矩形;

     。2)所給四邊形添加的'條件是三個獨立條件,但若與判定方法不同,則需要利用定義和判定方法證明或舉反例,才能下結論.

      例2(補充)已知ABCD的對角線AC、BD相交于點O,△AOB是等邊三角形,AB=4cm,求這個平行四邊形的面積.

      分析:首先根據△AOB是等邊三角形及平行四邊形對角線互相平分的性質判定出ABCD是矩形,再利用勾股定理計算邊長,從而得到面積值.

      解:∵ 四邊形ABCD是平行四邊形,

      ∴AO=AC,BO=BD.

      ∵ AO=BO,

      ∴ AC=BD.

      ∴ ABCD是矩形(對角線相等的平行四邊形是矩形).

      在Rt△ABC中,

      ∵ AB=4cm,AC=2AO=8cm,

      ∴BC=(cm).

      例3(補充)已知:如圖(1),ABCD的四個內角的平分線分別相交于點E,F,G,H.求證:四邊形EFGH是矩形.

      分析:要證四邊形EFGH是矩形,由于此題目可分解出基本圖形,如圖(2),因此,可選用“三個角是直角的四邊形是矩形”來證明

    八年級數學教案 篇2

      教學目標

     。ㄒ唬┲R與技能目標

      使學生理解并掌握分式的基本性質,并能運用這些性質進行分式化簡.

     。ǘ┻^程與方法目標

      通過分式的化簡提高學生的運算能力.

     。ㄈ┣楦信c價值目標.

      滲透類比轉化的數學思想方法.

      教學重點和難點

      1.重點:使學生理解并掌握分式的基本性質,這是學好本章的關鍵.

      2.難點:靈活運用分式的基本性質進行分式化簡.

      教學方法:分組討論.

      教學過程

      (一)情境引入

      1.數學小笑話:

      從前有個不學無術的富家子弟,有一次,父母出遠門去辦事,把他交給廚師照看,廚師問他:“我每天三餐每頓給你做兩個饅頭,夠嗎?”他哭喪著臉說:“不夠,不夠!”廚師又問:“那我就一天給你吃六個,怎么樣?”他馬上欣喜地說:“夠了!夠了!”

      2.問:這個富家子弟為什么會犯這樣的錯誤?

      3.分數約分的方法及依據是什么?

     。1)的依據是什么?呢?

     。2)你認為分式與相等嗎?與呢?

      (二)新課

      1.類比分數的基本性質,由學生小結出分式的`基本性質:

      分式的分子與分母都乘以(或除以)同一個不等于零的整式,分式的值不變,即:

      =,=(其中M是不等于零的整式)

      2.加深對分式基本性質的理解:

      例1下列等式的右邊是怎樣從左邊得到的?

      由學生口述分析,并反問:為什么c≠0?

      解:∵c≠0,∴==(2)=學生口答,教師設疑:為什么題目未給x≠0的條件?(引導學生學會分析題目中的隱含條件.)

    八年級數學教案 篇3

       一、學習目標及重、難點:

      1、了解方差的定義和計算公式。

      2、理解方差概念的產生和形成的過程。

      3、會用方差計算公式來比較兩組數據的波動大小。

      重點:方差產生的必要性和應用方差公式解決實際問題。

      難點:理解方差公式

      二、自主學習:

      (一)知識我先懂:

      方差:設有n個數據 ,各數據與它們的平均數的差的平方分別是

      我們用它們的平均數,表示這組數據的方差:即用

      來表示。

      給力小貼士:方差越小說明這組數據越 。波動性越 。

      (二)自主檢測小練習:

      1、已知一組數據為2、0、-1、3、-4,則這組數據的方差為 。

      2、甲、乙兩組數據如下:

      甲組:10 9 11 8 12 13 10 7;

      乙組:7 8 9 10 11 12 11 12.

      分別計算出這兩組數據的極差和方差,并說明哪一組數據波動較小.

      三、新課講解:

      引例:問題: 從甲、乙兩種農作物中各抽取10株苗,分別測得它的苗高如下:(單位:cm)

      甲:9、10、 10、13、7、13、10、8、11、8;

      乙:8、13、12、11、10、12、7、7、10、10;

      問:(1)哪種農作物的苗長的比較高(我們可以計算它們的平均數: = )

      (2)哪種農作物的.苗長得比較整齊?(我們可以計算它們的極差,你發現了 )

      歸納: 方差:設有n個數據 ,各數據與它們的平均數的差的平方分別是

      我們用它們的平均數,表示這組數據的方差:即用 來表示。

      (一)例題講解:

      例1、 段巍和金志強兩人參加體育項目訓練,近期的5次測試成績如下表所示,誰的成績比較穩定?為什么?、

      測試次數 第1次 第2次 第3次 第4次 第5次

      段巍 13 14 13 12 13

      金志強 10 13 16 14 12

      給力提示:先求平均數,在利用公式求解方差。

      (二)小試身手

      1、.甲、乙兩名學生在相同的條件下各射靶10次,命中的環數如下:

      甲:7、8、6、8、6、5、9、10、7、4 乙:9、5、7、8、7、6、8、6、7、7

      經過計算,兩人射擊環數的平均數是 ,但S = ,S = ,則S S ,所以確定

      去參加比賽。

      1、求下列數據的眾數:

      (1)3, 2, 5, 3, 1, 2, 3 (2)5, 2, 1, 5, 3, 5, 2, 2

      2、8年級一班46個同學中,13歲的有5人,14歲的有20人,15歲的15人,16歲的6人。8年級一班學生年齡的平均數,中位數,眾數分別是多少?

      四、課堂小結

      方差公式:

      給力提示:方差越小說明這組數據越 。波動性越 。

      每課一首詩:求方差,有公式;先平均,再求差;

      求平方,再平均;所得數,是方差。

      五、課堂檢測:

      1、小爽和小兵在10次百米跑步練習中成績如表所示:(單位:秒)

      小爽 10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9

      小兵 10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8

      如果根據這幾次成績選拔一人參加比賽,你會選誰呢?

      六、課后作業:必做題:教材141頁 練習1、2 選做題:練習冊對應部分習題

      七、學習小札記:

      寫下你的收獲,交流你的經驗,分享你的成果,你會感到無比的快樂!

    八年級數學教案 篇4

      學習目標:

      1、知道線段的垂直平分線的概念,探索并掌握成軸對稱的兩個圖形全等,對稱軸是對稱點連線的垂直平分線等性質.

      2、經歷探索軸對稱的性質的活動過程 ,積累數學活動經驗,進一步發展空間觀念和有條理地思考和表達能力.

      3、利用軸對稱的基本性質解決實際問題。

      學習重點:靈活運用對應點所連的線段被 對稱軸垂直平分、對應線段相等、對應角相等等性質。

      學習難點:軸對稱的`性質的理解和拓展運用。

      學習過程 :

      一、探索活動

      如右圖所示,在紙上任意畫一點A,把紙對折,用針在 點A處穿孔,再把紙展開,并連接兩針孔A、A.

      兩針孔A、A和線段AA與折痕MN之間有什么關系?

      1、請同學們按要求畫點、折紙、扎孔,仔細觀察你 所做的圖形,然后研究:兩針孔A、A與折痕MN之間有什么關系?線段AA與折痕MN之間又有什么關系呢?兩針孔A、A ,直線MN 線段AA.

      2、那么 直線MN為什么會垂直平分線段AA呢?

      3.垂直并且平分一條線段的直線,叫做線段的垂直平分線(mi dpoint perpendicular).

      例如,如圖,對稱軸MN就是對稱點A、A連線(即線段AA)的垂直 平分線.

      4.如圖,在紙上再任畫一點B,同樣地,折紙、穿孔、展開,并連接AB、AB、BB.線段AB與AB有什么關系?線段BB與MN 有什么關系?

      5.如圖,再在紙上任畫一點C,并仿照上面進行操作.

      (1)線段AC與 AC有什么關系 ? BC與BC呢?線段CC與MN有什么關系?

      (2)A與A有什么關系? B與B呢? △ABC 與△ABC有什么關系?為什么?

      (3)軸對稱有哪些性質?

      6.軸對稱的性質:

      (1)成軸對稱的兩個圖形全等.

      (2)如果兩個圖形成軸對稱,那么對稱軸是對稱點連線的垂直平分線.

      二、例題講解

      例1、(1)如圖,A 、B、C、D的對稱點分別是 ,線段AC、AB的對應線段分別是 ,CD= , CBA= ,ADC= .

      (2)連接AF、BE,則線段AF、BE有什么關系?并用測量的方法驗證.

      (3)AE與BF平行嗎?為什么?

      (4)AE與BF平行,能說明軸對稱圖形對稱點的連線一定 互相平行嗎?

      (5)延長線段BC、FG,作直線AB、EG,你有什么發現嗎?

    八年級數學教案 篇5

      一、教學目標

      1.使學生理解并掌握分式的概念,了解有理式的概念;

      2.使學生能夠求出分式有意義的條件;

      3.通過類比分數研究分式的教學,培養學生運用類比轉化的思想方法解決問題的能力;

      4.通過類比方法的教學,培養學生對事物之間是普遍聯系又是變化發展的辨證觀點的再認識.

      二、重點、難點、疑點及解決辦法

      1.教學重點和難點 明確分式的分母不為零.

      2.疑點及解決辦法 通過類比分數的意義,加強對分式意義的理解.

      三、教學過程

      【新課引入】

      前面所研究的因式分解問題是把整式分解成若干個因式的積的問題,但若有如下問題:某同學分鐘做了60個仰臥起坐,每分鐘做多少個?可表示為,問,這是不是整式?請一位同學給它試命名,并說一說怎樣想到的?(學生有過分數的經驗,可猜想到分式)

      【新課】

      1.分式的.定義

      (1)由學生分組討論分式的定義,對于“兩個整式相除叫做分式”等錯誤,由學生舉反例一一加以糾正,得到結論:

      用、表示兩個整式,就可以表示成的形式.如果中含有字母,式子就叫做分式.其中叫做分式的分子,叫做分式的分母.

      (2)由學生舉幾個分式的例子.

      (3)學生小結分式的概念中應注意的問題.

     、俜帜钢泻凶帜.

     、谌缤謹狄粯,分式的分母不能為零.

      (4)問:何時分式的值為零?[以(2)中學生舉出的分式為例進行討論]

      2.有理式的分類

      請學生類比有理數的分類為有理式分類:

      例1 當取何值時,下列分式有意義?

      (1);

      解:由分母得.

      ∴當時,原分式有意義.

      (2);

      解:由分母得.

      ∴當時,原分式有意義.

      (3);

      解:∵恒成立,

      ∴取一切實數時,原分式都有意義.

      (4).

      解:由分母得.

      ∴當且時,原分式有意義.

      思考:若把題目要求改為:“當取何值時下列分式無意義?”該怎樣做?

      例2 當取何值時,下列分式的值為零?

      (1);

      解:由分子得.

      而當時,分母.

      ∴當時,原分式值為零.

      小結:若使分式的值為零,需滿足兩個條件:①分子值等于零;②分母值不等于零.

      (2);

      解:由分子得.

      而當時,分母,分式無意義.

      當時,分母.

      ∴當時,原分式值為零.

      (3);

      解:由分子得.

      而當時,分母.

      當時,分母.

      ∴當或時,原分式值都為零.

      (4).

      解:由分子得.

      而當時,,分式無意義.

      ∴沒有使原分式的值為零的的值,即原分式值不可能為零.

      (四)總結、擴展

      1.分式與分數的區別.

      2.分式何時有意義?

      3.分式何時值為零?

      (五)隨堂練習

      1.填空題:

      (1)當時,分式的值為零

      (2)當時,分式的值為零

      (3)當時,分式的值為零

      2.教材P55中1、2、3.

      八、布置作業

      教材P56中A組3、4;B組(1)、(2)、(3).

      九、板書設計

      課題 例1

      1.定義例2

      2.有理式分類

    八年級數學教案 篇6

      活動一、創設情境

      引入:首先我們來看幾道練習題(幻燈片)

     。◤土暎浩叫芯及三角形全等的知識)

      下面我們一起來欣賞一組圖片(幻燈片)

      [學生活動]觀看后答問題:你看到了哪些圖形?

     。ǜ魇礁鳂拥膱D案裝點著我們的生活,使我們這個世界變得如此美麗,那么,請你用兩個相同的300的`三角板,看能拼出哪些圖案?)

      [學生活動]小組合作交流,拼出圖案的類型。

      同學們所拼的圖形中,除了有我們學過的三角形,還有很多四邊形,今天,我們一起來研究四邊形,探索四邊形的性質。(幻燈片出示課題)

      活動二、合作交流,探求新知

      問題(1):為什么我們把(甲)圖叫平行四邊形,而(乙)圖不是平行四邊形呢?你怎么知道這些四邊形是平行四邊形?(拿一模型,幻燈片)

      [學生活動]認真觀察、討論、思考、推理。

      鼓勵學生交流,并是試著用自己的語言概括出平行四邊形的定義。

      學生交流,歸納:有兩組對邊分別平行的四邊形叫做平行四邊形。

      并說明:平行四邊形不相鄰的兩個頂點連成的線段叫它的對角線。

      平行四邊形用“”表示,如圖平行四邊形ABCD記作“ABCD”讀作:平行四邊形ABCD。(幻燈片出示揭示課題)

      問題(2):由平行四邊形的定義,我們知道平行四邊形的兩組對邊分別平行,平行四邊形還有什么特征呢?

      [學生活動]動手操作,小組演示交流。鼓勵學生用多種方法探究。

      小結平行四邊形的性質:

      平行四邊形的對邊相等

      平行四邊形的對角相等(這里要弄清對角、對邊兩個名詞)

      你能演示你的結論是如何得到的嗎?(學生演示)

      你能證明嗎?(幻燈片出示證明題)

      [學生活動]先分析思路尤其是輔助線,請學生上黑板證明。

      自己完成性質2的證明。

      活動三、運用新知

      性質掌握了嗎?一起來看一道題目:

      嘗試練習(幻燈片)例1

      [學生活動]作嘗試性解答。

    八年級數學教案 篇7

      教學目標:

      情意目標:培養學生團結協作的精神,體驗探究成功的樂趣。

      能力目標:能利用等腰梯形的性質解簡單的幾何計算、證明題;培養學生探究問題、自主學習的能力。

      認知目標:了解梯形的概念及其分類;掌握等腰梯形的性質。

      教學重點、難點

      重點:等腰梯形性質的探索;

      難點:梯形中輔助線的添加。

      教學課件:PowerPoint演示文稿

      教學方法:啟發法、

      學習方法:討論法、合作法、練習法

      教學過程:

     。ㄒ唬⿲

      1、出示圖片,說出每輛汽車車窗形狀(投影)

      2、板書課題:5梯形

      3、練習:下列圖形中哪些圖形是梯形?(投影)

      結梯形概念:只有4、總結梯形概念:一組對邊平行另以組對邊不平行的四邊形是梯形。

      5、指出圖形中各部位的名稱:上底、下底、腰、高、對角線。(投影)

      6、特殊梯形的分類:(投影)

     。ǘ┑妊菪涡再|的探究

      【探究性質一】

      思考:在等腰梯形中,如果將一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影)

      猜想:由此你能得到等腰梯形的`內角有什么樣的性質?(學生操作、討論、作答)

      如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C

      想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?

      等腰梯形性質:等腰梯形的同一條底邊上的兩個內角相等。

      【操練】

     。1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)

     。2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長線于點E,CA平分∠BCD,求證:∠B=2∠E.(投影)

      【探究性質二】

      如果連接等腰梯形的兩條對角線,圖中有哪幾對全等三角形?哪些線段相等?(學生操作、討論、作答)

      如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)

      等腰梯形性質:等腰梯形的兩條對角線相等。

      【探究性質三】

      問題一:延長等腰梯形的兩腰,哪些三角形是軸對稱圖形?為什么?對稱軸呢?(學生操作、作答)

      問題二:等腰梯是否軸對稱圖形?為什么?對稱軸是什么?(重點討論)

      等腰梯形性質:同以底上的兩個內角相等,對角線相等

     。ㄈ┵|疑反思、小結

      讓學生回顧本課教學內容,并提出尚存問題;

      學生小結,教師視具體情況給予提示:性質(從邊、角、對角線、對稱性等角度總結)、解題方法(化梯形問題為三角形及平行四邊形問題)、梯形中輔助線的添加方法。

    【八年級數學教案】相關文章:

    八年級的數學教案12-14

    八年級數學教案06-18

    【熱】八年級數學教案12-07

    八年級的數學教案15篇12-14

    八年級數學教案【推薦】12-04

    八年級數學教案【薦】12-06

    【精】八年級數學教案12-04

    八年級數學教案【精】12-04

    【熱門】八年級數學教案11-29

    【推薦】八年級數學教案12-05

    av片在线观看无码免费_日日高潮夜夜爽高清视频_久久精品中文字幕乱码视频_在线亚州av播放