• <i id="549yd"></i>
  • 
    
  • 現在位置:范文先生網>教案大全>數學教案>七年級數學教案>初中七年級數學教案

    初中七年級數學教案

    時間:2022-03-20 03:08:20 七年級數學教案 我要投稿

    初中七年級數學教案

      作為一位兢兢業業的人民教師,編寫教案是必不可少的,通過教案準備可以更好地根據具體情況對教學進程做適當的必要的調整。教案要怎么寫呢?下面是小編收集整理的初中七年級數學教案,希望能夠幫助到大家。

    初中七年級數學教案

    初中七年級數學教案1

      學習目標

      1. 理解三線八角中沒有公共頂點的角的位置關系 ,知道什么是同位角、內錯角、同旁內角.毛

      2. 通過比較、觀察、掌握同位角、內錯角、同旁內角的特征,能正確識別圖形中的同位角、內錯角和同旁內角.

      重點難點

      同位角、內錯角、同旁內角的特征

      教學過程

      一·導入

      1.指出右圖中所有的鄰補角和對頂角?

      2. 圖中的∠1與∠5,∠3與∠5,∠3與∠6 是鄰補角或對頂角嗎?

      若都不是,請自學課本P6內容后回答它們各是什么關系的角?

      二·問題導學

      1.如圖⑴,將木條,與木條c釘在一起,若把它們看成三條直 線則該圖可說成"直線 和直線 與直線 相交" 也可以說成"兩條直線 , 被第三條直線所截".構成了小于平角的角共有 個,通常將這種圖形稱作為"三線八角"。其中直線 , 稱為兩被截線,直線 稱為截線。

      2. 如圖⑶是"直線 , 被直線 所截"形成的圖形

      (1)∠1與∠5這對角在兩被截線AB,CD的. ,在截線EF 的 ,形如" " 字型.具有這種關系的一對角叫同位角。

      (2)∠3與∠5這對角在兩被截線AB,CD的 ,在截線EF的 ,形如" " 字型.具有這種關系的一對角叫內錯角。

      (3)∠3與∠6這對角在兩被截線AB,CD的 ,在截線EF的 ,形如" " 字型.具有這種關系的一對角叫同旁內角。

      3.找出圖⑶中所有的同位角、內錯角、同旁內角

      4.討論與交流:

      (1)"同位角、內錯角、同旁內角"與"鄰補角、對頂角"在識別方法上有什么區別?

      (2)歸納總結同位角、內錯角、同旁內角的特征:

      同位角:"F" 字型,"同旁同側"

      "三線八角" 內錯角:"Z" 字型,"之間兩側"

      同旁內角:"U" 字型,"之間同側"

      三·典題訓練

      例1. 如圖⑵中∠1與∠2,∠3與∠4, ∠1與∠4分別是哪兩條直線被哪一條直線所截形成的什么角?

      小結 將左右手的大拇指和食指各組成一個角,兩食指相對成一條直線,兩個大拇指反向的時候,組成內錯角;

      兩食指相對成一條直線,兩個大拇指同向的時候,組成同旁內角;

      自我檢測

     、比鐖D⑷,下列說法不正確的是( )

      A、∠1與∠2是同位角 B、∠2與∠3是同位角

      C、∠1與∠3是同位角 D、∠1與∠4不是同位角

     、踩鐖D⑸,直線AB、CD被直線EF所截,∠A和 是同位角,∠A和 是內錯角,∠A和 是同旁內角.

     、橙鐖D⑹, 直線DE截AB, AC, 構成八個角:

     、 指出圖中所有的同位角、內錯角、同旁內角.

     、凇螦與∠5, ∠A與∠6, ∠A與∠8, 分別是哪一條直線截哪兩條直線而成的什么角?

     、慈鐖D⑺,在直角ABC中,∠C=90°,DE⊥AC于E,交AB于D .

     、僦赋霎擝C、DE被AB所截時,∠3的同位角、內錯角和同旁內角.

     、谠囌f明∠1=∠2=∠3的理由.(提示:三角形內角和是1800)

      相交線與平行線練習

      課型:復習課: 備課人:徐新齊 審核人:霍紅超

      一.基礎知識填空

      1、如圖,∵AB⊥CD(已知)

      ∴∠BOC=90°( )

      2、如圖,∵∠AOC=90°(已知)

      ∴AB⊥CD( )

      3、∵a∥b,a∥c(已知)

      ∴b∥c( )

      4、∵a⊥b,a⊥c(已知)

      ∴b∥c( )

      5、如圖,∵∠D=∠DCF(已知)

      ∴XXXXX//XXXXXX( )

      6、如圖,∵∠D+∠BAD=180°(已知)

      ∴XXXXX//XXXXXX( )

      (第1、2題) (第5、6題) (第7題) (第9題)

      7、如圖,∵ ∠2 = ∠3( )

      ∠1 = ∠2(已知)

      ∴∠1 = ∠3( )

      ∴CDXXXXEF ( )

      8、∵∠1+∠2 =180°,∠2+∠3=180°(已知)

      ∴∠1 = ∠3( )

      9、∵a//b(已知)

      ∴∠1=∠2( )

      ∠2=∠3( )

      ∠2+∠4=180°( )

      10.如圖,CD⊥AB于D,E是BC上一點,EF⊥AB于F,∠1=∠2.試說明∠BDG+∠B=180°.

      二.基礎過關題:

      1、如圖:已知∠A=∠F,∠C=∠D,求證:BD∥CE 。

      證明:∵∠A=∠F ( 已知 )

      ∴AC∥DF ( )

      ∴∠D=∠ ( )

      又∵∠C=∠D ( 已知 ),

      ∴∠1=∠C ( 等量代換 )

      ∴BD∥CE( )。

      2、如圖:已知∠B=∠BGD,∠DGF=∠F,求證:∠B + ∠F =180°。

      證明:∵∠B=∠BGD ( 已知 )

      ∴AB∥CD ( )

      ∵∠DGF=∠F;( 已知 )

      ∴CD∥EF ( )

      ∵AB∥EF ( )

      ∴∠B + ∠F =180°( )。

      3、如圖,已知AB∥CD,EF交AB,CD于G、H, GM、HN分別平分∠AGF,∠EHD,試說明GM ∥HN.

    初中七年級數學教案2

      一元一次不等式組

      教學目標

      1、熟練掌握一元一次不等式組的解法,會用一元一次不等式組解決有關的實際問題;

      2、理解一元一次不等式組應用題的一般解題步驟,逐步形成分析問題和解決問題的能力;

      3、體驗數學學習的樂趣,感受一元一次不等式組在解決實際問題中的價值。

      教學難點

      正確分析實際問題中的不等關系,列出不等式組。

      知識重點

      建立不等式組解實際問題的數學模型。

      探究實際問題

      出示教科書第145頁例2(略)

      問:(1)你是怎樣理解“不能完成任務”的數量含義的?

      (2)你是怎樣理解“提前完成任務”的'數量含義的?

      (3)解決這個問題,你打算怎樣設未知數?列出怎樣的不等式?

      師生一起討論解決例2.

      歸納小結

      1、教科書146頁“歸納”(略).

      2、你覺得列一元一次不等式組解應用題與列二元一次方程組解應用題的步驟一樣嗎?

      在討論或議論的基礎上老師揭示:

      步法一致(設、列、解、答);本質有區別.(見下表)一元一次不等式組應用題與二元一次方程組應用題解題步驟異同表。

    初中七年級數學教案3

      教學目標

      1, 掌握有理數的概念,會對有理數按照一定的標準進行分類,培養分類能力;

      2, 了解分類的標準與分類結果的相關性,初步了解“集合”的含義;

      3, 體驗分類是數學上的常用處理問題的方法。

      教學難點 正確理解分類的標準和按照一定的標準進行分類

      知識重點 正確理解有理數的概念

      教學過程(師生活動) 設計理念

      探索新知 在前兩個學段,我們已經學習了很多不同類型的數,通過上兩節課的學習,又知道了現在的數包括了負數,現在請同學們在草稿紙上任意寫出3個數(同時請3個同學在黑板上寫出).

      問題1:觀察黑板上的9個數,并給它們進行分類.

      學生思考討論和交流分類的情況.

      學生可能只給出很粗略的分類,如只分為“正數”和“負數”或“零”三類,此時,教師應給予引導和鼓勵.

      例如,

      對于數5,可這樣問:5和5. 1有相同的類型嗎?5可以表示5個人,而5. 1可以表示人數嗎?(不可以)所以它們是不同類型的數,數5是正數中整個的數,我們就稱它為“正整數”,而5. 1不是整個的數,稱為“正分數,,.…(由于小數可化為分數,以后把小數和分數都稱為分數)

      通過教師的`引導、鼓勵和不斷完善,以及學生自己的概括,最后歸納出我們已經學過的5類不同的數,它們分別是“正整數,零,負整數,正分數,負分數,’.

      按照書本的說法,得出“整數”“分數”和“有理數”的概念.

      看書了解有理數名稱的由來.

      “統稱”是指“合起來總的名稱”的意思.

      試一試:按照以上的分類,你能作出一張有理數的分類表嗎?你能說出以上有理數的分類是以什么為標準的嗎?(是按照整數和分數來劃分的) 分類是數學中解決問題的常用手段,這個引入具有開放的特點,學生樂于參與

      學生自己嘗試分類時,可能會很粗略,教師給予引導和鼓勵,劃分數的類型要從文字所表示的意義上去引導,這樣學生易于理解。

      有理數的分類表要在黑板或媒體上展示,分類的標準要引導學生去體會

      練一練 1,任意寫出三個有理數,并說出是什么類型的數,與同伴進行交流.

      2,教科書第10頁練習.

      此練習中出現了集合的概念,可向學生作如下的說明.

      把一些數放在一起,就組成了一個數的集合,簡稱“數集”,所有有理數組成的數集叫做有理數集.類似地,所有整數組成的數集叫做整數集,所有負數組成的數集叫做負數集……;

      數集一般用圓圈或大括號表示,因為集合中的數是無限的,而本題中只填了所給的幾個數,所以應該加上省略號.

      思考:上面練習中的四個集合合并在一起就是全體有理數的集合嗎?

      也可以教師說出一些數,讓學生進行判斷。

      集合的概念不必深入展開。

      創新探究 問題2:有理數可分為正數和負數兩大類,對嗎?為什么?

      教學時,要讓學生總結已經學過的數,鼓勵學生概括,通過交流和討論,教師作適當的指導,逐步得到如下的分類表。

      有理數 這個分類可視學生的程度確定是否有必要教學。

      應使學生了解分類的標準不一樣時,分類的結果也是不同的,所以分類的標準要明確,使分類后每一個參加分類的象屬于其中的某一類而只能屬于這一類,教學中教師可舉出通俗易懂的例子作些說明,可以按年齡,也可以按性別、地域來分等

      小結與作業

      課堂小結 到現在為止我們學過的數都是有理數(圓周率除外),有理數可以按不同的標準進行分類,標準不同,分類的結果也不同。

      本課作業

      1, 必做題:教科書第18頁習題1.2第1題

      2, 教師自行準備

      本課教育評注(課堂設計理念,實際教學效果及改進設想)

      1,本課在引人了負數后對所學過的數按照一定的標準進行分類,提出了有理數的概念.分類是數學中解決問題的常用手段,通過本節課的學習使學生了解分類的思想并進行簡單的分類是數學能力的體現,教師在教學中應引起足夠的重視.關于分類標準與分類結果的關系,分類標準的確定可向學生作適當的滲透,集合的概念比較抽象,學生真正接受需要很長的過程,本課不要過多展開。

      2,本課具有開放性的特點,給學生提供了較大的思維空間,能促進學生積極主動地參加學習,親自體驗知識的形成過程,可避免直接進行分類所帶來的枯燥性;同時還體現合作學習、交流、探究提高的特點,對學生分類能力的養成有很好的作用。

      3,兩種分類方法,應以第一種方法為主,第二種方法可視學生的情況進行。

    初中七年級數學教案4

      一、說教材分析

      1.教材的地位和作用

      二元一次方程組是初中數學的重點內容之一,是一元一次方程知識的延續和提高,又是學習其他數學知識的基礎。本節課是在學生學習了一元一次方程的基礎上,繼續學習另一種方程及方程組,它是學生系統學習二元一次方程組知識的前提和基礎。通過類比,讓學生從中充分體會二元一次方程組,理解并掌握解二元一次方程組的基本概念,為以后函數等知識的學習打下基礎。

      2.教學目標

      知識目標:通過實例了解二元一次方程和它的解,二元一次方程組和它的解。

      能力目標:會判斷一組未知數的值是否為二元一次方程及方程組的解。會在實際問題中列二元一次方程組。

      情感目標:使學生通過交流、合作、討論獲取成功體驗,激發學生學習知識的興趣,增強學生的自信心。

      3.重點、 難點

      重點:二元一次方程和二元一次方程的解,二元一次方程組和二元一次方程組的解的概念。

      難點:在實際生活中二元一次方程組的應用。

      二、教法

      現代教學理論認為,在教學過程中,學生是學習的主體,教師是學習的組織者、言道者,教學的一切活動必須以強調學生的主動性、積極性為出發點。根據這一教學理念,結合本節課的內容特點和學生的年齡特征,本節課我采用啟發式、討論式以及講練結合的教學方法,以問題的提出、問題的解決為主線,始終在學生知識的“最近發展區”設置問題,倡導學生主動參與教學實踐活動,以獨立思考和相互交流的形式,在教師的指導下發現、分析和解決問題,在引導分析時,給學生留出足夠的思考時間和空間,讓學生去聯想、探索,從真正意義上完成對知識的自我建構。

      另外,在教學過程中,我采用多媒體輔助教學,以直觀呈現教學素材,從而更好發激發學生的學習興趣,增大教學容量,提高教學效率。

      三、學法

      “問題”是數學教學的心臟,活動是數學教學中的靈魂。所以我在學生思維最近發展區內設置并提出一系列問題,通過數學活動,引導學生:自主性學習,合作式學習,探究式學習等,激發學生的學習興趣,提高學生的數學思維和參與度,力求學生在“雙基”數學能力和理性精神方面得到一定發展。

      四、教學過程

      新課標指出,數學教學過程是教師引導學生進行學習活動的過程,是教師和學生間互動的過程,是師生共同發展的過程。為有序、有效地進行教學,本節課我主要安排以下教學環節:

      (1)復習舊知,溫故知新

      籃球聯賽中,每場比賽都要分出勝負,每隊勝一場得2分.負一場得1分,某隊為了爭取較好的名次,想在全部22場比賽中得到40分,那么這個隊勝負場數分別是多少?

      設計意圖:構建注意主張教學應從學生已有的'知識體系出發,方程是本節課深入研究二元一次方程組的認知基礎,這樣設計有利于引導學生順利地進入學習情境。

      (2)創設情境,提出問題

      這個問題中包含了哪些必須同時滿足的條件?設勝的場數是x,負的場數是y,你能用方程把這些條件表示出來嗎?

      由問題知道,題中包含兩個必須同時滿足的條件:

      勝的場數+負的場數=總場數,

      勝場積分+負場積分=總積分。

      這兩個條件可以用方程

      x+y=22

      2x+y=40

      表示:

      上面兩個方程中,每個方程都含有兩個未知數(x和y),并且未知數的指數都是1,像這樣的方程叫做二元一次方程.

      把兩個方程合在一起,寫成

      x+y=22

      2x+y=40

      像這樣,把兩個二元一次方程合在一起,就組成了一個二元一次方程組。

      設計意圖:以問題串的形式創設情境,引起學生的認知沖突,使學生對舊知識產生設疑,從而激發學生的學習興趣和求知欲望,通過情境創設,學生已激發了強烈的求知欲望,產生了強勁的學習動力,此時我把學生帶入下一環節。

      (3)發現問題,探求新知

      滿足方程①,且符合問題的實際意義的x、y的值有哪些?把它們填入表中。

    初中七年級數學教案5

      一:說教材:

      1 教材的地位和作用

      本節課是在學習了有理數加減法及乘除法法則的基礎上學習的。本節課對前面所學知識是一個很好的小結,同時也為后面的有理數混合運算做好鋪墊,很好地鍛煉了學生的運算能力,并在現實生活中有比較廣泛的應用。

      3 教育目標

      (1)、知識與能力

     、倌馨凑沼欣頂导訙p乘除的運算順序,正確熟練地進行運算。

     、谂囵B學生的觀察能力、分析能力和運算能力。

      (2)、過程與方法

      培養學生在解決應用題前認真審題,觀察題目已知條件,確定解題思路,列出代數式,并確定運算順序,計算中按步驟進行,最后要驗算的好習慣。

      (3)、情感態度價值觀

      通過本例的學習,學生認識到如何利用有理數的四則運算解決實際問題,并認識到小學算術里的四則混合運算順序同樣適用于有理數系,學生會感受到知識普適性美。

      4 教學重點和難點

      重點和難點是如何利用有理數列式解決實際問題及正確而

      合理地進行計算。

      二:說教法

      鑒于七年級學生的年齡特點,他們對概念的理解能力不強,精神不能長時間集中,但思維比較活躍。嘗試指導法,以學生為主體,以訓練為主線。為了突出學生的主體性,使學生積極參與到數學活動中來,采用了問題性教學模式!耙詫W生為主體、以問題為中心、以活動為基礎、以培養分析問題和解決問題能力為目標。

      三:說學法指導

      本例將指導學生通過觀察、討論、動手等活動,主動探索,發現問題;互動合作,解決問題;歸納概括,形成能力。增強數學應用意識,合作意識,養成及時歸納總結的良好學習習慣。

      四:師生互動活動設計

      教師用投影儀出示例題,學生用搶答等多種形式完成最終的解題。

      五:說教學程序

      (課本36頁)例9:某公司去年1~3月份平均每月虧損1.5萬元,4~6月份平均每月盈利2萬元,7~10月份平均每月盈利1.7萬元,11~12月份平均每月虧損2.3萬元,這個公司去年盈虧情況如何?

      師生共析:認真審題,觀察、分析本題的問題共同回答以下問題:

      1 全年哪幾個月是虧損的?哪幾個月是的盈利的?

      2 各月虧損與盈利情況又如何?

      3 如果盈利記為“ ”,虧損記為“-”,那么全年虧損多少?

      盈利多少?

      6 你能將虧損情況與盈利情況用算式列出來嗎?

      (5)通過算式你能說出這個公司去年盈虧情況如何嗎?

      【師生行為】:由教師指導學生列出算式并指出運算順序(有理數加減乘除混合運算,如無括號,則按“先乘除后加減”的順序進行。)再由學生自主完成運算。

      【教法說明】:此題一方面可以復習加法運算,另一方面為以后學習有理數混合運算做準備,特別注意運算順序。同時訓練了學生的觀察,分析題目的`能力。為以后解決實際問題做準備。

      (三):歸納小結

      今天我們通過例9的學習懂得了遇到實際問題應把實際問題通過“觀察—分析—動手”的過程用數學的形式表現出來,直觀準確的解決問題。

      六:說板書設計

      板書要少而精,直觀性要強。能使學生清楚的看到本節課的重點,模仿示范例題熟練而準確的完成練習。也能體現出學生做題時出現的問題,便于及時糾正。

    初中七年級數學教案6

      教學目標

      1. 使學生在了解代數式概念的基礎上,能把簡單的與數量有關的詞語用代數式表示出來;

      2. 初步培養學生觀察、分析和抽象思維的能力.

      教學重點和難點

      重點:列代數式.

      難點:弄清楚語句中各數量的意義及相互關系.

      課堂教學過程設計

      一、從學生原有的認知結構提出問題

      1?用代數式表示乙數:(投影)

      (1)乙數比x大5;(x+5)

      (2)乙數比x的2倍小3;(2x-3)

      (3)乙數比x的倒數小7;( -7)

      (4)乙數比x大16%?((1+16%)x)

      (應用引導的方法啟發學生解答本題)

      2?在代數里,我們經常需要把用數字或字母敘述的一句話或一些計算關系式,列成代數式,正如上面的練習中的問題一樣,這一點同學們已經比較熟悉了,但在代數式里也常常需要把用文字敘述的一句話或計算關系式(即日常生活語言)列成代數式?本節課我們就來一起學習這個問題?

      二、講授新課

      例1 用代數式表示乙數:

      (1)乙數比甲數大5; (2)乙數比甲數的2倍小3;

      (3)乙數比甲數的倒數小7; (4)乙數比甲數大16%?

      分析:要確定的乙數,既然要與甲數做比較,那么就只有明確甲數是什么之后,才能確定乙數,因此寫代數式以前需要把甲數具體設出來,才能解決欲求的乙數?

      解:設甲數為x,則乙數的代數式為

      (1)x+5 (2)2x-3; (3) -7; (4)(1+16%)x?

      (本題應由學生口答,教師板書完成)

      最后,教師需指出:第4小題的答案也可寫成x+16%x?

      例2 用代數式表示:

      (1)甲乙兩數和的2倍;

      (2)甲數的 與乙數的 的差;

      (3)甲乙兩數的平方和;

      (4)甲乙兩數的和與甲乙兩數的差的積;

      (5)乙甲兩數之和與乙甲兩數的差的積?

      分析:本題應首先把甲乙兩數具體設出來,然后依條件寫出代數式?

      解:設甲數為a,乙數為b,則

      (1)2(a+b); (2) a- b; (3)a2+b2;

      (4)(a+b)(a-b); (5)(a+b)(b-a)或(b+a)(b-a)?

      (本題應由學生口答,教師板書完成)

      此時,教師指出:a與b的和,以及b與a的和都是指(a+b),這是因為加法有交換律?但a與b的差指的是(a-b),而b與a的差指的是(b-a)?兩者明顯不同,這就是說,用文字語言敘述的'句子里應特別注意其運算順序?

      例3 用代數式表示:

      (1)被3整除得n的數;

      (2)被5除商m余2的數?

      分析本題時,可提出以下問題:

      (1)被3整除得2的數是幾?被3整除得3的數是幾?被3整除得n的數如何表示?

      (2)被5除商1余2的數是幾?如何表示這個數?商2余2的數呢?商m余2的數呢?

      解:(1)3n; (2)5m+2?

      (這個例子直接為以后讓學生用代數式表示任意一個偶數或奇數做準備)?

      例4 設字母a表示一個數,用代數式表示:

      (1)這個數與5的和的3倍;(2)這個數與1的差的 ;

      (3)這個數的5倍與7的和的一半;(4)這個數的平方與這個數的 的和?

      分析:啟發學生,做分析練習?如第1小題可分解為“a與5的和”與“和的3倍”,先將“a與5的和”例成代數式“a+5”再將“和的3倍”列成代數式“3(a+5)”?

      解:(1)3(a+5); (2) (a-1); (3) (5a+7); (4) a2+ a?

      (通過本例的講解,應使學生逐步掌握把較復雜的數量關系分解為幾個基本的數量關系,培養學生分析問題和解決問題的能力?)

      例5 設教室里座位的行數是m,用代數式表示:

      (1)教室里每行的座位數比座位的行數多6,教室里總共有多少個座位?

      (2)教室里座位的行數是每行座位數的 ,教室里總共有多少個座位?

      分析本題時,可提出如下問題:

      (1)教室里有6行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?

      (2)教室里有m行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?

      (3)通過上述問題的解答結果,你能找出其中的規律嗎?(總座位數=每行的座位數×行數)

      解:(1)m(m+6)個; (2)( m)m個?

      三、課堂練習

      1?設甲數為x,乙數為y,用代數式表示:(投影)

      (1)甲數的2倍,與乙數的 的和; (2)甲數的 與乙數的3倍的差;

      (3)甲乙兩數之積與甲乙兩數之和的差;(4)甲乙的差除以甲乙兩數的積的商?

      2?用代數式表示:

      (1)比a與b的和小3的數; (2)比a與b的差的一半大1的數;

      (3)比a除以b的商的3倍大8的數; (4)比a除b的商的3倍大8的數?

      3?用代數式表示:

      (1)與a-1的和是25的數; (2)與2b+1的積是9的數;

      (3)與2x2的差是x的數; (4)除以(y+3)的商是y的數?

      〔(1)25-(a-1); (2) ; (3)2x2+2; (4)y(y+3)?〕

      四、師生共同小結

      首先,請學生回答:

      1?怎樣列代數式?2?列代數式的關鍵是什么?

      其次,教師在學生回答上述問題的基礎上,指出:對于較復雜的數量關系,應按下述規律列代數式:

      (1)列代數式,要以不改變原題敘述的數量關系為準(代數式的形式不唯一);

      (2)要善于把較復雜的數量關系,分解成幾個基本的數量關系;

      (3)把用日常生活語言敘述的數量關系,列成代數式,是為今后學習列方程解應用題做準備?要求學生一定要牢固掌握?

      五、作業

      1?用代數式表示:

      (1)體校里男生人數占學生總數的60%,女生人數是a,學生總數是多少?

      (2)體校里男生人數是x,女生人數是y,教練人數與學生人數之比是1∶10,教練人數是多?

      2?已知一個長方形的周長是24厘米,一邊是a厘米,

      求:(1)這個長方形另一邊的長;(2)這個長方形的面積.

      學法探究

      已知圓環內直徑為acm,外直徑為bcm,將100個這樣的圓環一個接著一個環套環地連成一條鎖鏈,那么這條鎖鏈拉直后的長度是多少厘米?

      分析:先深入研究一下比較簡單的情形,比如三個圓環接在一起的情形,看 有沒有規律.

      當圓環為三個的時候,如圖:

      此時鏈長為,這個結論可以繼續推廣到四個環、五個環、…直至100個環,答案不難得到:

      解:

      =99a+b(cm)

    初中七年級數學教案7

      平行線的判定(1)

      課型:新課: 備課人:韓賀敏 審核人:霍紅超

      學習目標

      1.經歷觀察、操作、想像、推理、交流等活動,進一步發展推理能力和有條理表達能力.

      2.掌握直線平行的條件,領悟歸納和轉化的數學思想

      學習重難點:探索并掌握直線平行的條件是本課的重點也是難點.

      一、探索直線平行的條件

      平行線的判定方法1:

      二、練一練1、判斷題

      1.兩條直線被第三條直線所截,如果同位角相等,那么內錯角也相等.( )

      2.兩條直線被第三條直線所截,如果內錯角互補,那么同旁內角相等.( )

      2、填空1.如圖1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或筆________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_______,那么a∥b,理由是__________.

      (2)

      (3)

      2.如圖2,若∠2=∠6,則______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.

      三、選擇題

      1.如圖3所示,下列條件中,不能判定AB∥CD的是( )

      A.AB∥EF,CD∥EF B.∠5=∠A; C.∠ABC+∠BCD=180° D.∠2=∠3

      2.右圖,由圖和已知條件,下列判斷中正確的是( )

      A.由∠1=∠6,得AB∥FG;

      B.由∠1+∠2=∠6+∠7,得CE∥EI

      C.由∠1+∠2+∠3+∠5=180°,得CE∥FI;

      D.由∠5=∠4,得AB∥FG

      四、已知直線a、b被直線c所截,且∠1+∠2=180°,試判斷直線a、b的位置關系,并說明理由.

      五、作業課本15頁-16頁練習的1、2、3、

      5.2.2平行線的判定(2)

      課型:新課: 備課人:韓賀敏 審核人:霍紅超

      學習目標

      1.經歷觀察、操作、想像、推理、交流等活動,進一步發展空

      間觀念,推理能力和有條理表達能力.

      毛2.分析題意說理過程,能靈活地選用直線平行的方法進行說理.

      學習重點:直線平行的'條件的應用.

      學習難點:選取適當判定直線平行的方法進行說理是重點也是難點.

      一、學習過程

      平行線的判定方法有幾種?分別是什么?

      二.鞏固練習:

      1.如圖2,若∠2=∠6,則______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.

      (第1題) (第2題)

      2.如圖,一個合格的變形管道ABCD需要AB邊與CD邊平行,若一個拐角∠ABC=72°,則另一個拐角∠BCD=_______時,這個管道符合要求.

      二、選擇題.

      1.如圖,下列判斷不正確的是( )

      A.因為∠1=∠4,所以DE∥AB

      B.因為∠2=∠3,所以AB∥EC

      C.因為∠5=∠A,所以AB∥DE

      D.因為∠ADE+∠BED=180°,所以AD∥BE

      2.如圖,直線AB、CD被直線EF所截,使∠1=∠2≠90°,則( )

      A.∠2=∠4 B.∠1=∠4 C.∠2=∠3 D.∠3=∠4

      三、解答題.

      1.你能用一張不規則的紙(比如,如圖1所示的四邊形的紙)折出兩條平行的直線嗎?與同伴說說你的折法.

      2.已知,如圖2,點B在AC上,BD⊥BE,∠1+∠C=90°,問射線CF與BD平行嗎?試用兩種方法說明理由.

    【初中七年級數學教案】相關文章:

    初中七年級數學教案12-30

    初中七年級下冊數學教案01-13

    初中七年級數學教案11篇12-30

    初中七年級數學教案(11篇)12-30

    初中七年級數學教案(精選6篇)03-07

    初中七年級數學教案(通用15篇)07-23

    初中數學教案08-12

    初中數學教案【精】01-26

    【推薦】初中數學教案01-26

    【熱】初中數學教案01-12

    av片在线观看无码免费_日日高潮夜夜爽高清视频_久久精品中文字幕乱码视频_在线亚州av播放