• <i id="549yd"></i>
  • 
    
  • 現在位置:范文先生網>教案大全>數學教案>八年級數學教案>八年級數學教案

    八年級數學教案

    時間:2022-08-23 20:54:05 八年級數學教案 我要投稿

    八年級數學教案模板匯編5篇

      作為一名專為他人授業解惑的人民教師,通常需要用到教案來輔助教學,教案是保證教學取得成功、提高教學質量的基本條件。那么大家知道正規的教案是怎么寫的嗎?以下是小編整理的八年級數學教案5篇,希望能夠幫助到大家。

    八年級數學教案模板匯編5篇

    八年級數學教案 篇1

      數據的波動

      教學目標:

      1、經歷數據離散程度的探索過程

      2、了解刻畫數據離散程度的三個量度極差、標準差和方差,能借助計算器求出相應的數值。

      教學重點:會計算某些數據的極差、標準差和方差。

      教學難點:理解數據離散程度與三個差之間的關系。

      教學準備:計算器,投影片等

      教學過程:

      一、創設情境

      1、投影課本P138引例。

      (通過對問題串的解決,使學生直觀地估計從甲、乙兩廠抽取的20只雞腿的平均質量,同時讓學生初步體會平均水平相近時,兩者的離散程度未必相同,從而順理成章地引入刻畫數據離散程度的一個量度極差)

      2、極差:是指一組數據中最大數據與最小數據的差,極差是用來刻畫數據離散程度的一個統計量。

      二、活動與探究

      如果丙廠也參加了競爭,從該廠抽樣調查了20只雞腿,數據如圖(投影課本159頁圖)

      問題:1、丙廠這20只雞腿質量的平均數和極差是多少?

      2、如何刻畫丙廠這20只雞腿質量與其平均數的差距?分別求出甲、丙兩廠的20只雞腿質量與對應平均數的差距。

      3、在甲、丙兩廠中,你認為哪個廠雞腿質量更符合要求?為什么?

      (在上面的情境中,學生很容易比較甲、乙兩廠被抽取雞腿質量的極差,即可得出結論。這里增加一個丙廠,其平均質量和極差與甲廠相同,此時導致學生思想認識上的矛盾,為引出另兩個刻畫數據離散程度的量度標準差和方差作鋪墊。

      三、講解概念:

      方差:各個數據與平均數之差的平方的平均數,記作s2

      設有一組數據:x1, x2, x3,,xn,其平均數為

      則s2= ,

      而s= 稱為該數據的標準差(既方差的'算術平方根)

      從上面計算公式可以看出:一組數據的極差,方差或標準差越小,這組數據就越穩定。

      四、做一做

      你能用計算器計算上述甲、丙兩廠分別抽取的20只雞腿質量的方差和標準差嗎?你認為選哪個廠的雞腿規格更好一些?說說你是怎樣算的?

      (通過對此問題的解決,使學生回顧了用計算器求平均數的步驟,并自由探索求方差的詳細步驟)

      五、鞏固練習:課本第172頁隨堂練習

      六、課堂小結:

      1、怎樣刻畫一組數據的離散程度?

      2、怎樣求方差和標準差?

      七、布置作業:習題5.5第1、2題。

    八年級數學教案 篇2

      知識技能

      1.了解兩個圖形成軸對稱性的性質,了解軸對稱圖形的性質。

      2.探究線段垂直平分線的性質。

      過程方法

      1.經歷探索軸對稱圖形性質的過程,進一步體驗軸對稱的特點,發展空間觀察。

      2.探索線段垂直平分線的性質,培養學生認真探究、積極思考的'能力。

      情感態度價值觀通過對軸對稱圖形性質的探索,促使學生對軸對稱有了更進一步的認識,活動與探究的過程可以更大程度地激發學生學習的主動性和積極性,并使學生具有一些初步研究問題的能力。

      教學重點

      1.軸對稱的性質。

      2.線段垂直平分線的性質。

      教學難點體驗軸對稱的特征。

      教學方法和手段多媒體教學

      過程教學內容

      引入中垂線概念

      引出圖形對稱的性質第一張幻燈片

      上節課我們共同探討了軸對稱圖形,知道現實生活中由于有軸對稱圖形,而使得世界非常美麗。那么我們今天繼續來研究軸對稱的性質。

      幻燈片二

      1、圖中的對稱點有哪些?

      2、點A和A的連線與直線MN有什么樣的關系?

      理由?:△ABC與△ABC關于直線MN對稱,點A、B、C分別是點A、B、C的對稱點,設AA交對稱軸MN于點P,將△ABC和△ABC沿MN對折后,點A與A重合,于是有AP=AP,MPA=MPA=90。所以AA、BB和CC與MN除了垂直以外,MN還經過線段AA、BB和CC的中點。

      我們把經過線段中點并且垂直于這條線段的直線,叫做這條線段的垂直平分線。

      定義:經過線段的中點并且垂直于這條線段,就叫這條線段的垂直平分線,也叫中垂線。

    八年級數學教案 篇3

      教學目標:

      1、 理解運用平方差公式分解因式的方法。

      2、 掌握提公因式法和平方差公式分解因式的綜合運用。

      3、 進一步培養學生綜合、分析數學問題的能力。

      教學重點:

      運用平方差公式分解因式。

      教學難點:

      高次指數的轉化,提公因式法,平方差公式的靈活運用。

      教學案例:

      我們數學組的觀課議課主題:

      1、關注學生的合作交流

      2、如何使學困生能積極參與課堂交流。

      在精心備課過程中,我設計了這樣的自學提示:

      1、整式乘法中的平方差公式是___,如何用語言描述?把上述公式反過來就得到_____,如何用語言描述?

      2、下列多項式能用平方差公式分解因式嗎?若能,請寫出分解過程,若不能,說出為什么?

     、-x2+y2 ②-x2-y2 ③4-9x2

     、 (x+y)2-(x-y)2 ⑤ a4-b4

      3、試總結運用平方差公式因式分解的條件是什么?

      4、仿照例4的分析及旁白你能把x3y-xy因式分解嗎?

      5、試總結因式分解的步驟是什么?

      師巡回指導,生自主探究后交流合作。

      生交流熱情很高,但把全部問題分析完已用了30分鐘。

      生展示自學成果。

      生1: -x2+y2能用平方差公式分解,可分解為(y+x)(y-x)

      生2: -x2+y2=-(x2-y2)=-(x+y)(x-y)

      師:這兩種方法都可以,但第二種方法提出負號后,一定要注意括號里的各項要變號。

      生3:4-9x2 也能用平方差公式分解,可分解為(2+9x)(2-9x)

      生4:不對,應分解為(2+3x)(2-3x),要運用平方差公式必須化為兩個數或整式的平方差的形式。

      生5: a4-b4可分解為(a2+b2)(a2-b2)

      生6:不對,a2-b2 還能繼續分解為a+b)(a-b)

      師:大家爭論的很好,運用平方差公式分解因式,必須化為兩個數或兩個整式的平方的差的形式,另因式分解必須分解到不能再分解為止!

      反思:這節課我備課比較認真,自學提示的設計也動了一番腦筋,為讓學生順利得出運用平方差公式因式分解的條件,我設計了問題2,為讓學生能更容易總結因式分解的步驟,我又設計了問題4,自認為,本節課一定會上的非常成功,學生的交流、合作,自學展示一定會很精彩,結果卻出乎我的意料,本節課沒有按計劃完成教學任務,學生練習很少,作業有很大一部分同學不能獨立完成,反思這節課主要有以下幾個問題:

      (1) 我在備課時,過高估計了學生的能力,問題2中的'③、④、⑤ 多數學生剛預習后不能熟練解答,導致在小組交流時,多數學生都在交流這幾題該怎樣分解,耽誤了寶貴的時間,也分散了學生的注意力,導致難點、重點不突出,若能把問題2改為:

      下列多項式能用平方差公式因式分解嗎?為什么?可能效果會更好。

      (2) 教師備課時,要考慮學生的知識層次,能力水平,真正把學生放在第一位,要考慮學生的接受能力,安排習題要循序漸進,切莫過于心急,過分追求課堂容量、習題類型全等等,例如在問題2的設計時可寫一些簡單的,像④、⑤ 可到練習時再出現,發現問題后再強調、歸納,效果也可能會更好。

      我及時調整了自學提示的內容,在另一個班也上了這節課。果然,學生的討論有了重點,很快(大約10分鐘)便合作得出了結論,課堂氣氛非;钴S,練習量大,準確率高,但隨之我又發現我在處理課后練習時有點不能應對自如。例如:師:下面我們把課后練習做一下,話音剛落,大家紛紛拿著本到我面前批改。師:都完了?生:全完了。我很興奮。來:“我們再做幾題試試!鄙珠_始緊張地練習……下課后,無意間發現竟還有好幾個同學課后題沒做。原因是預習時不會,上課又沒時間,還有幾位同學練習題竟然有誤,也沒改正,原因是上課慌著展示自己,沒顧上改……?磥,以后上課不能單聽學生的齊答,要發揮組長的職責,注重過關落實。給學生一點機動時間,讓學習有困難的學生有機會釋疑,練習不在于多,要注意融會貫通,會舉一反三。

      確實,“學海無涯,教海無邊”。我們備課再認真,預設再周全,面對不同的學生,不同的學情,仍然會產生新的問題,“沒有最好,只有更好!”我會一直探索、努力,不斷完善教學設計,更新教育觀念,直到永遠……

    八年級數學教案 篇4

      教學建議

      知識結構

      重難點分析

      本節的重點是中位線定理.三角形中位線定理和梯形中位線定理不但給出了三角形或梯形中線段的位置關系,而且給出了線段的數量關系,為平面幾何中證明線段平行和線段相等提供了新的思路.

      本節的難點是中位線定理的證明.中位線定理的證明教材中采用了同一法,同一法學生初次接觸,思維上不容易理解,而其他證明方法都需要添加2條或2條以上的輔助線,添加的目的性和必要性,同以前遇到的情況對比有一定的難度.

      教法建議

      1. 對于中位線定理的引入和證明可采用發現法,由學生自己觀察、猜想、測量、論證,實際掌握效果比應用講授法應好些,教師可根據學生情況參考采用

      2.對于定理的證明,有條件的教師可考慮利用多媒體課件來進行演示知識的形成及證明過程,效果可能會更直接更易于理解

      教學設計示例

      一、教學目標

      1.掌握中位線的概念和三角形中位線定理

      2.掌握定理“過三角形一邊中點且平行另一邊的直線平分第三邊”

      3.能夠應用三角形中位線概念及定理進行有關的論證和計算,進一步提高學生的計算能力

      4.通過定理證明及一題多解,逐步培養學生的分析問題和解決問題的能力

      5. 通過一題多解,培養學生對數學的興趣

      二、教學設計

      畫圖測量,猜想討論,啟發引導.

      三、重點、難點

      1.教學重點:三角形中位線的概論與三角形中位線性質.

      2.教學難點:三角形中位線定理的證明.

      四、課時安排

      1課時

      五、教具學具準備

      投影儀、膠片、常用畫圖工具

      六、教學步驟

      【復習提問】

      1.敘述平行線等分線段定理及推論的內容(結合學生的'敘述,教師畫出草圖,結合圖形,加以說明).

      2.說明定理的證明思路.

      3.如圖所示,在平行四邊形ABCD中,M、N分別為BC、DA中點,AM、CN分別交BD于點E、F,如何證明 ?

      分析:要證三條線段相等,一般情況下證兩兩線段相等即可.如要證 ,只要 即可.首先證出四邊形AMCN是平行四邊形,然后用平行線等分線段定理即可證出.

      4.什么叫三角形中線?(以上復習用投影儀打出)

      【引入新課】

      1.三角形中位線:連結三角形兩邊中點的線段叫做三角形中位線.

      (結合三角形中線的定義,讓學生明確兩者區別,可做一練習,在 中,畫出中線、中位線)

      2.三角形中位線性質

      了解了三角形中位線的定義后,我們來研究一下,三角形中位線有什么性質.

      如圖所示,DE是 的一條中位線,如果過D作 ,交AC于 ,那么根據平行線等分線段定理推論2,得 是AC的中點,可見 與DE重合,所以 .由此得到:三角形中位線平行于第三邊.同樣,過D作 ,且DE FC,所以DE .因此,又得出一個結論,那就是:三角形中位線等于第三邊的一半.由此得到三角形中位線定理.

      三角形中位線定理:三角形中位城平行于第三邊,并且等于它的一半.

      應注意的兩個問題:①為便于同學對定理能更好的掌握和應用,可引導學生分析此定理的特點,即同一個題設下有兩個結論,第一個結論是表明中位線與第三邊的位置關系,第二個結論是說明中位線與第三邊的數量關系,在應用時可根據需要來選用其中的結論(可以單獨用其中結論).②這個定理的證明方法很多,關鍵在于如何添加輔助線.可以引導學生用不同的方法來證明以活躍學生的思維,開闊學生思路,從而提高分析問題和解決問題的能力.但也應指出,當一個命題有多種證明方法時,要選用比較簡捷的方法證明.

      由學生討論,說出幾種證明方法,然后教師總結如下圖所示(用投影儀演示).

      (l)延長DE到F,使 ,連結CF,由 可得AD FC.

      (2)延長DE到F,使 ,利用對角線互相平分的四邊形是平行四邊形,可得AD FC.

      (3)過點C作 ,與DE延長線交于F,通過證 可得AD FC.

      上面通過三種不同方法得出AD FC,再由 得BD FC,所以四邊形DBCF是平行四邊形,DF BC,又因DE ,所以DE .

      (證明過程略)

      例 求證:順次連結四邊形四條邊的中點,所得的四邊形是平行四邊形.

      (由學生根據命題,說出已知、求證)

      已知:如圖所示,在四邊形ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點.

      求證:四邊形EFGH是平行四邊形.‘

      分析:因為已知點分別是四邊形各邊中點,如果連結對角線就可以把四邊形分成三角形,這樣就可以用三角形中位線定理來證明出四邊形EFGH對邊的關系,從而證出四邊形EFGH是平行四邊形.

      證明:連結AC.

      ∴ (三角形中位線定理).

      同理,

      ∴GH EF

      ∴四邊形EFGH是平行四邊形.

      【小結】

      1.三角形中位線及三角形中位線與三角形中線的區別.

      2.三角形中位線定理及證明思路.

      七、布置作業

      教材P188中1(2)、4、7

    八年級數學教案 篇5

      活動一、創設情境

      引入:首先我們來看幾道練習題(幻燈片)

     。◤土暎浩叫芯及三角形全等的知識)

      下面我們一起來欣賞一組圖片(幻燈片)

      [學生活動]觀看后答問題:你看到了哪些圖形?

     。ǜ魇礁鳂拥膱D案裝點著我們的生活,使我們這個世界變得如此美麗,那么,請你用兩個相同的300的三角板,看能拼出哪些圖案?)

      [學生活動]小組合作交流,拼出圖案的類型。

      同學們所拼的圖形中,除了有我們學過的三角形,還有很多四邊形,今天,我們一起來研究四邊形,探索四邊形的性質。(幻燈片出示課題)

      活動二、合作交流,探求新知

      問題(1):為什么我們把(甲)圖叫平行四邊形,而(乙)圖不是平行四邊形呢?你怎么知道這些四邊形是平行四邊形?(拿一模型,幻燈片)

      [學生活動]認真觀察、討論、思考、推理。

      鼓勵學生交流,并是試著用自己的語言概括出平行四邊形的定義。

      學生交流,歸納:有兩組對邊分別平行的四邊形叫做平行四邊形。

      并說明:平行四邊形不相鄰的兩個頂點連成的線段叫它的對角線。

      平行四邊形用“”表示,如圖平行四邊形ABCD記作“ABCD”讀作:平行四邊形ABCD。(幻燈片出示揭示課題)

      問題(2):由平行四邊形的定義,我們知道平行四邊形的'兩組對邊分別平行,平行四邊形還有什么特征呢?

      [學生活動]動手操作,小組演示交流。鼓勵學生用多種方法探究。

      小結平行四邊形的性質:

      平行四邊形的對邊相等

      平行四邊形的對角相等(這里要弄清對角、對邊兩個名詞)

      你能演示你的結論是如何得到的嗎?(學生演示)

      你能證明嗎?(幻燈片出示證明題)

      [學生活動]先分析思路尤其是輔助線,請學生上黑板證明。

      自己完成性質2的證明。

      活動三、運用新知

      性質掌握了嗎?一起來看一道題目:

      嘗試練習(幻燈片)例1

      [學生活動]作嘗試性解答。

    【八年級數學教案】相關文章:

    八年級的數學教案12-14

    八年級數學教案06-18

    八年級上冊數學教案11-09

    人教版八年級數學教案11-04

    【熱門】八年級數學教案11-29

    【熱】八年級數學教案12-07

    八年級數學教案【薦】12-06

    【推薦】八年級數學教案12-05

    【薦】八年級數學教案12-03

    八年級數學教案【熱門】12-03

    av片在线观看无码免费_日日高潮夜夜爽高清视频_久久精品中文字幕乱码视频_在线亚州av播放