• <i id="549yd"></i>
  • 
    
  • 現在位置:范文先生網>教案大全>數學教案>八年級數學教案>八年級數學教案

    八年級數學教案

    時間:2022-08-20 23:57:06 八年級數學教案 我要投稿

    【精選】八年級數學教案四篇

      作為一名人民教師,時常需要編寫教案,通過教案準備可以更好地根據具體情況對教學進程做適當的必要的調整。寫教案需要注意哪些格式呢?以下是小編為大家收集的八年級數學教案4篇,供大家參考借鑒,希望可以幫助到有需要的朋友。

    【精選】八年級數學教案四篇

    八年級數學教案 篇1

      數據的波動

      教學目標:

      1、經歷數據離散程度的探索過程

      2、了解刻畫數據離散程度的三個量度極差、標準差和方差,能借助計算器求出相應的數值。

      教學重點:會計算某些數據的極差、標準差和方差。

      教學難點:理解數據離散程度與三個差之間的關系。

      教學準備:計算器,投影片等

      教學過程:

      一、創設情境

      1、投影課本P138引例。

      (通過對問題串的解決,使學生直觀地估計從甲、乙兩廠抽取的20只雞腿的平均質量,同時讓學生初步體會平均水平相近時,兩者的離散程度未必相同,從而順理成章地引入刻畫數據離散程度的一個量度極差)

      2、極差:是指一組數據中最大數據與最小數據的差,極差是用來刻畫數據離散程度的一個統計量。

      二、活動與探究

      如果丙廠也參加了競爭,從該廠抽樣調查了20只雞腿,數據如圖(投影課本159頁圖)

      問題:1、丙廠這20只雞腿質量的平均數和極差是多少?

      2、如何刻畫丙廠這20只雞腿質量與其平均數的`差距?分別求出甲、丙兩廠的20只雞腿質量與對應平均數的差距。

      3、在甲、丙兩廠中,你認為哪個廠雞腿質量更符合要求?為什么?

      (在上面的情境中,學生很容易比較甲、乙兩廠被抽取雞腿質量的極差,即可得出結論。這里增加一個丙廠,其平均質量和極差與甲廠相同,此時導致學生思想認識上的矛盾,為引出另兩個刻畫數據離散程度的量度標準差和方差作鋪墊。

      三、講解概念:

      方差:各個數據與平均數之差的平方的平均數,記作s2

      設有一組數據:x1, x2, x3,,xn,其平均數為

      則s2= ,

      而s= 稱為該數據的標準差(既方差的算術平方根)

      從上面計算公式可以看出:一組數據的極差,方差或標準差越小,這組數據就越穩定。

      四、做一做

      你能用計算器計算上述甲、丙兩廠分別抽取的20只雞腿質量的方差和標準差嗎?你認為選哪個廠的雞腿規格更好一些?說說你是怎樣算的?

      (通過對此問題的解決,使學生回顧了用計算器求平均數的步驟,并自由探索求方差的詳細步驟)

      五、鞏固練習:課本第172頁隨堂練習

      六、課堂小結:

      1、怎樣刻畫一組數據的離散程度?

      2、怎樣求方差和標準差?

      七、布置作業:習題5.5第1、2題。

    八年級數學教案 篇2

      [教學分析]

      勾股定理是揭示三角形三條邊數量關系的一條非常重要的性質,也是幾何中最重要的定理之一。它是解直角三角形的主要依據之一,同時在實際生活中具有廣泛的用途,“數學源于生活,又用于生活”正是這章書所體現的主要思想。教材在編寫時注意培養學生的動手操作能力和分析問題的能力,通過實際操作,使學生獲得較為直觀的印象;通過聯系比較、探索、歸納,幫助學生理解勾股定理,以利于進行正確的應用。

      本節教科書從畢達哥拉斯觀察地面發現勾股定理的傳說談起,讓學生通過觀察計算一些以直角三角形兩條直角邊為邊長的小正方形的面積與以斜邊為邊長的正方形的面積的關系,發現兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積,從而發現勾股定理,這時教科書以命題的形式呈現了勾股定理。關于勾股定理的證明方法有很多,教科書正文中介紹了我國古人趙爽的證法。之后,通過三個探究欄目,研究了勾股定理在解決實際問題和解決數學問題中的應用,使學生對勾股定理的作用有一定的認識。

      [教學目標]

      一、 知識與技能

      1、探索直角三角形三邊關系,掌握勾股定理,發展幾何思維。

      2、應用勾股定理解決簡單的實際問題

      3學會簡單的合情推理與數學說理

      二、 過程與方法

      引入兩段中西關于勾股定理的史料,激發同學們的興趣,引發同學們的思考。通過動手操作探索與發現直角三角形三邊關系,經歷小組協作與討論,進一步發展合作交流能力和數學表達能力,并感受勾股定理的應用知識。

      三、 情感與態度目標

      通過對勾股定理歷史的了解,感受數學文化,激發學習興趣;在探究活動中,學生親自動手對勾股定理進行探索與驗證,培養學生的合作交流意識和探索精神,以及自主學習的能力。

      四、 重點與難點

      1、探索和證明勾股定理

      2熟練運用勾股定理

      [教學過程]

      一、創設情景,揭示課題

      1、教師展示圖片并介紹第一情景

      以中國最早的一部數學著作——《周髀算經》的開頭為引,介紹周公向商高請教數學知識時的對話,為勾股定理的出現埋下伏筆。

      周公問:“竊聞乎大夫善數也,請問古者包犧立周天歷度.夫天不可階而升,地不可得尺寸而度,請問數安從出?”商高答:“數之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環而共盤.得成三、四、五,兩矩共長二十有五,是謂積矩。故禹之所以治天下者,此數之所由生也!

      2、教師展示圖片并介紹第二情景

      畢達哥拉斯是古希臘著名的數學家。相傳在2500年以前,他在朋友家做客時,發現朋友家用地磚鋪成的地面反映了直角三角形的某種特性。

      二、師生協作,探究問題

      1、現在請你也動手數一下格子,你能有什么發現嗎?

      2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點呢?

      3、你能得到什么結論嗎?

      三、得出命題

      勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊長為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋: 由于我國古代把直角三角形中較短的'直角邊稱為勾,較長的邊稱為股,斜邊稱為弦,所以,把它叫做勾股定理。

      四、勾股定理的證明

      趙爽弦圖的證法(圖2)

      第一種方法:邊長為 的正方形可以看作是由4個直角邊分別為 、 ,斜邊為 的直角三角形圍在外面形成的。因為邊長為 的正方形面積加上4個直角三角形的面積等于外圍正方形的面積,所以可以列出等式 ,化簡得 。

      第二種方法:邊長為 的正方形可以看作是由4個直角邊分別為 、 ,斜邊為 的

      角三角形拼接形成的(虛線表示),不過中間缺出一個邊長為 的正方形“小洞”。

      因為邊長為 的正方形面積等于4個直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式 ,化簡得 。

      這種證明方法很簡明,很直觀,它表現了我國古代數學家趙爽高超的證題思想和對數學的鉆研精神,是我們中華民族的驕傲。

      五、應用舉例,拓展訓練,鞏固反饋。

      勾股定理的靈活運用勾股定理在實際的生產生活當中有著廣泛的應用。勾股定理的發現和使用解決了許多生活中的問題,今天我們就來運用勾股定理解決一些問題,你可以嗎?試一試。

      例題:小明媽媽買了一部29英寸(74厘米)的電視機,小明量了電視機的屏幕后,發現屏幕只有58厘長和46厘米寬,他覺得一定是售貨員搞錯了,你同意他的想法嗎?你能解釋這是為什么嗎?

      六、歸納總結1、內容總結:探索直角三角形兩直角邊的平方和等于斜邊的平方,利于勾股定理,解決實際問題

      2、方法歸納:數方格看圖找關系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀察歸納注意畫一個直角三角形表示正方形面積,再次驗證自己的發現。

      七、討論交流

      讓學生發表自己的意見,提出他們模糊不清的概念,給他們一個梳理知識的機會,通過提示性的引導,讓學生對勾股定理的概念豁然開朗,為后面勾股定理的應用打下基礎。

      我們班的同學很聰明。大家很快就通過數格子發現了勾股定理的規律。還有什么地方不懂的嗎?跟大家一起來交流一下。請同學們課后在反思天地中都發表一下自己的學習心得。

    八年級數學教案 篇3

      一、平移:在平面內,將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移。

      1.平移

      2.平移的性質:⑴經過平移,對應點所連的線段平行且相等;⑵對應線段平行且相等,對應角相等。⑶平移不改變圖形的大小和形狀(只改變圖形的位置)。(4)平移后的圖形與原圖形全等。

      3.簡單的平移作圖

     、俅_定個圖形平移后的位置的條件:

     、判枰瓐D形的位置;⑵需要平移的方向;⑶需要平移的距離或一個對應點的位置。

     、谧髌揭坪蟮膱D形的方法:

     、耪页鲫P鍵點;⑵作出這些點平移后的對應點;⑶將所作的對應點按原來方式順次連接,所得的;

      二、旋轉:在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動稱為旋轉,這個定點稱為旋轉中心,轉動的角稱為旋轉角。

      1.旋轉

      2.旋轉的性質

     、判D變化前后,對應線段,對應角分別相等,圖形的大小,形狀都不改變(只改變圖形的位置)。

     、菩D過程中,圖形上每一個點都繞旋轉中心沿相同方向轉動了相同的角度。

     、侨我庖粚c與旋轉中心的'連線所成的角都是旋轉角,對應點到旋轉中心的距離相等。

     、刃D前后的兩個圖形全等。

      3.簡單的旋轉作圖

     、乓阎瓐D,旋轉中心和一對對應點,求作旋轉后的圖形。

     、埔阎瓐D,旋轉中心和一對對應線段,求作旋轉后的圖形。

     、且阎瓐D,旋轉中心和旋轉角,求作旋轉后的圖形。

      三、分析組合圖案的形成

     、俅_定組合圖案中的“基本圖案”

     、诎l現該圖案各組成部分之間的內在聯系

     、厶剿髟搱D案的形成過程,類型有:⑴平移變換;⑵旋轉變換;⑶軸對稱變換;⑷旋轉變換與平移變換的組合;

     、尚D變換與軸對稱變換的組合;⑹軸對稱變換與平移變換的組合。

    八年級數學教案 篇4

      教學目標:

      1。經歷探索平行四邊形有關概念和性質的過程,在活動中發展學生的探究意識和合作交流的習慣;

      2。索并掌握平行四邊形的性質,并能簡單應用;

      3。在探索活動過程中發展學生的探究意識。

      教學重點:平行四邊形性質的探索。

      教學難點:平行四邊形性質的理解。

      教學準備:多媒體課件

      教學過程

      第一環節:實踐探索,直觀感知(5分鐘,動手實踐、探索、感知,學生進一步探索了平行四邊形的概念,明確了平行四邊形的本質特征。)

      1。小組活動一

      內容:

      問題1:同學們拿出準備好的剪刀、彩紙或白紙一張。將一張紙對折,剪下兩張疊放的三角形紙片,將它們相等的一邊重合,得到一個四邊形。

     。1)你拼出了怎樣的四邊形?與同桌交流一下;

     。2)給出小明拼出的四邊形,它們的對邊有怎樣的位置關系?說說你的理由,請用簡捷的語言刻畫這個圖形的特征。

      2。小組活動二

      內容:生活中常見到平行四邊形的實例有什么呢?你能舉例說明嗎?

      第二環節 探索歸納、合作交流(5分鐘,學生動手、動嘴,全班交流)

      小組活動3:

      用 一張半透明的紙復制你剛才畫的平行四邊形,并將復制 后的四邊形繞一個頂點旋轉180,你能平移該紙片,使它與你畫的平行四邊形重合嗎?由此你能得到哪些結論?四邊形的對邊、對角分別有什么關系?能用別的方法驗證你的結論嗎?

     。1)讓學生動手操作、復制、旋轉 、觀察、分析;

     。2)學生交流、議論;

     。3)教師利用多媒體展示實踐的過程。

      第三環節 推理論證、感悟升華(10分鐘,學生通過說理,由直觀感受上升到理性分析,在操作層面感知的基礎上提升,并了解圖形具有的數學本質。)

      實踐 探索內容

     。1)通過剪紙,拼紙片,及旋轉,可以觀察到平行四邊行的對角線把它分成的兩個三角形全等。

     。2)可以通過推理來證明這個結論,如圖連結AC。

      ∵ 四邊形ABCD是平行四邊形

      AD // BC, AB // CD

      2,4

      △AB C和△CDA中

      1

      AC=C A

      4

      △ABC≌△CDA(ASA)

      AB=DC, AD=CB,B

      又∵2

      4

      3=4

      即BAD=DCB

      第四環節 應用鞏固 深化提高(10分鐘,通過議一議,練一練,學生進一步理解平行四邊形的性質,并進行簡單合情推理,體現性質的.應用,同時從不同角度平移、旋轉等再一次認識平行四邊形的本質特征。)

      1;顒觾热荩

     。1)議一議:如果已知平行四邊形的一個內角度數,能確定其它三個內角的度數嗎?

      A(學生思考、議論)

      B總結歸納:可以確定其它三個內角的度數。

      由平行四邊形對 邊分邊平行 得到鄰角互補;又由于平行四邊形對角相等,由此已知平行四邊形的一個內角的度數,可以確定其它三個角度數。

     。2)練一練(P99隨堂練習)

      練1 如圖:四邊形ABCD是平行四邊形。

     。1)求ADC、BCD度數

     。2)邊AB、BC的度數、長度。

      練2 四邊形ABCD是平行四邊形

     。1)它的四條邊中哪些 線段可以通過平移相到得到?

     。2)設對角線AC、BD交于O;AO與OC、BO與OD有何關系?說說理由。

      歸 納:平行四邊形的性質:平行四邊形的對角線互相平分。

      第五環節 評價反思 概括總結(8分鐘,學生踴躍談感受和收獲)

      活動內容

      師生相互交流、反思、總結。

     。1)經歷了對平行四邊形的特征探索,你有什么感受和收獲?給自己一個評價。

     。2)在與同伴合作交流中練表現,優秀方面有哪些?你看到同伴哪些優點?

     。3)本節學習到了什么?(知識上、方法上)

      考一考:

      1。 ABCD中,B=60,則A= ,C= ,D= 。

      2。 ABCD中,A比B大20,則C= 。

      3。 ABCD中,AB=3,BC=5,則AD= CD= 。

      4。 ABCD中,周長為40cm,△ABC周長為25,則對角線AC=( )cm。

      布置作業

      課本習題4。1

      A組(學優生)1 、2

      B組(中等生)1、2

      C組(后三分之一生)1、2

      教學反思

    【八年級數學教案】相關文章:

    八年級的數學教案12-14

    八年級數學教案06-18

    八年級上冊人教版數學教案02-27

    八年級的數學教案15篇12-14

    八年級下冊數學教案01-01

    【薦】八年級數學教案12-03

    【熱】八年級數學教案12-07

    【精】八年級數學教案12-04

    八年級數學教案【精】12-04

    八年級數學教案【熱門】12-03

    av片在线观看无码免费_日日高潮夜夜爽高清视频_久久精品中文字幕乱码视频_在线亚州av播放