- 數學教案-圓和圓的位置關系 推薦度:
- 相關推薦
圓和圓的位置關系 教案
作為一名為他人授業解惑的教育工作者,往往需要進行教案編寫工作,借助教案可以提高教學質量,收到預期的教學效果。寫教案需要注意哪些格式呢?以下是小編收集整理的圓和圓的位置關系 教案,希望能夠幫助到大家。
圓和圓的位置關系 教案1
廣東省東莞市新星學校 毛成勝
教 材: 華師大版第九冊23章2.4圓與圓的位置關系P60~62
教學目的要求:
知識目標:1、了解圓和圓五種位置的定義,
2、熟練掌握用數量關系來識別圓與圓的位置關系
能力目標:培養學生的觀察、想象、分析、動手操作、概括的能力,“分類討論”的.數學思想,
情感目標:利用多種教學手段來激發學生學習的興趣,通過鼓勵和肯定學生,培養他們敢于
想象,勇于探索的學習精神。
教學重點:用數量關系來識別圓與圓的位置關系
教學難點:用數量關系來識別圓與圓的位置關系
教學用具:多媒體
教學方法:問題、引導、直觀演示、總結
學法指導:猜想、類比、觀察、歸納、實驗探究、合作交流
教學過程:
圓和圓的位置關系 教案2
目標:
知識目標:經歷探索兩個圓之間位置關系的過程;了解圓與圓之間的幾種位置關系;了解兩圓外切、內切與兩圓圓心距d、半徑R和r的數量關系的聯系
重點和難點
重點:圓與圓之間的幾種位置關系
難點:兩圓外切、內切與兩圓圓心距d、半徑R和r的數量關系的聯系
教學過程設計
一、從學生原有的認知結構提出問題
1)復習點與圓的位置關系;2)復習直線與圓的位置關系。
二、師生共同研究形成概念
1.書本引例
☆ 想一想 P 125 平移兩個圓
利用平移實驗直觀地探索圓和圓的位置關系。
2.圓與圓的位置關系
每一種位置關系都可以先讓學生想想應該用什么名稱表達。在講解兩圓外切、內切與兩圓圓心距d、半徑R和r的數量關系的聯系時,可先讓學生探索,老師不要生硬地把答案說出
☆ 鞏固練習 若兩圓沒有交點,則這兩個圓的位置關系是 相離 ;
若兩圓有一個交點,則這兩個圓的位置關系是 相切 ;
若兩圓有兩個交點,則這兩個圓的位置關系是 相交 ;
☆ 想一想 書本P 126 想一想
通過實際例子讓學生理解圓與圓的位置關系。
3.圓與圓相切的性質
☆ 想一想 書本P 127 想一想
旨在引導學生思考兩圓相切的性質:如果兩圓相切,那么兩圓的連心線經過切點,這一性質是下面議一議的'基礎。學生容易看出兩圓相切圖形的軸對稱性及對稱軸,但要說明切點在連心線上則有一定困難。
如果兩圓相切,那么兩圓的連心線經過切點
4.講解例題
例1.已知⊙ 、⊙ 相交于點A、B,∠A B = 120°,∠A B = 60°, = 6cm。求:(1)∠ A 的度數;2)⊙ 的半徑 和⊙ 的半徑 。
5.講解例題
例2.兩個同樣大小的肥皂泡粘在一起,其剖面如圖所示,分隔兩個肥皂泡的肥皂膜PQ成一條直線,TP、NP分別為兩圓的切線,求∠TPN的大小。
三、隨堂練習
1.書本 P 128 隨堂練習
2.《練習冊》 P 59
四、小結
圓與圓的位置關系;圓心距與兩圓半徑和兩圓的關系。
五、作業
書本 P 130 習題3.9 1
六、教學后記
圓和圓的位置關系 教案3
教學目標
(一)教學知識點
1.了解圓與圓之間的幾種位置關系.
2.了解兩圓外切、內切與兩圓圓心距d、半徑R和r的數量關系的聯系.
(二) 能力訓練要求
1.經歷探索兩個圓之間位置關系的過程,訓練學生的探索能力.
2.通過平移實驗直觀地探索圓和圓的位置關系,發展學生的識圖能力和動手操作能力.
(三)情感與價值觀要求
1.通過探索圓和圓的位置關系,體驗數學活動充滿著探索與創造,感受數學的嚴謹性以及數學結論的確定性.
2.經歷探究圖形的位置關系,豐富對現實空間及圖形的認識,發展形象思維.
教學重點
探索圓與圓之間的幾種位置關系,了解兩圓外切、內切與兩圓圓心距d、半徑R和r的數量關系的聯系.
教學難點
探索兩個圓之間的位置關系,以及外切、內切時兩圓圓心距d、半徑R和r的數量關系的過程.
教學方法
教師講解與學生合作交流探索法
教具準備
投 影片三張
第一張:(記作3. 6A)
第二張:(記作3.6B)
第三張:(記作3.6C)
教學過程
、瘢畡撛O問題情境,引入新課
[師]我們已經研究過點和圓的位置關系,分別為點在圓內、點在圓上、點在圓外三種;還探究了直線和圓的位置關系,分別為相離、相切、相交.它們的位置關系都有三種.今天我們要學習的內容是圓和圓的位置關系,那么結果是不是也是三種呢?沒有調查就沒有發言權.下面我們就來進行有關探討.
、颍抡n講解
一、想一想
[師]大家思考一下,在現實生活中你見過兩個圓的哪些位置關系呢?
[生]如自行車的兩個車輪間的位置關 系;車輪輪胎的兩個邊界圓間的位置關系;用一只手拿住大小兩個圓環時兩個圓環間的位置關系等.
[師]很好,現實生活中我們見過的有關兩個圓的位置很多.下面我們就來討論這些位置關系分別是什么.
二、探索圓和圓的位置關系
在一張透明紙上作一個⊙O.再在另一張透明紙上作一個與⊙O1半徑不等的⊙O2.把兩張透明紙疊在一起,固定⊙O1,平移⊙O2,⊙O1與⊙O2有幾種位置關系?
[師]請大家先自己動手操作,總結出不同的位置關系,然后互相交流.
[生]我總結出共有五種位置關系,如下圖:
[師]大家的歸納、總結能力很強,能說出五種位置關系中各自有什么特點嗎?從公共點的個數和一個圓上的點在另一個圓的內部還是外 部來考慮.
[生]如圖:(1)外離:兩個圓沒有公共點,并且每一個圓上的點都在另一個圓的外部;
(2)外切:兩個圓有唯一公共點,除公共點外一個圓上的'點都在另一個圓的外部;
(3)相交:兩個圓有兩個公共點,一 個圓上的點有的在另一個圓的外部,有的在另一個圓的內部;
(4)內切:兩個圓有一個公共點,除公共點外,⊙O2上的點在⊙O1的內部;
(5)內含:兩個圓沒有公共點,⊙O2上的點都在⊙O1的內部.
[師]總結得很出色,如果只從公共點的個數來考慮,上面的五種位置關系中有相同類型嗎?
[生]外離和內含都沒有公共點;外切和內切都有一個公共點;相交有兩個公共點.
[師]因此只從公共點的個數來考慮,可分為相離、相切、相交三種.
經過大家的討論我們可知:
投影片(24.3A)
(1)如果從公共點的個數,和一個圓上的點在另一個圓的外部還是內部來考慮,兩個圓的位置關系有五種:外離、外切、相交、內切、內含.
(2)如果只從公共點的個數來考慮分三種:相離、相切、相交,并且相離 ,相切
三、例題講解
投影片(24.3B)
兩個同樣大小的肥皂 泡黏在一起,其剖面如圖所示(點O,O'是圓心),分隔兩個肥皂泡的肥皂膜PQ成一條直 線,TP、NP分別為兩圓的切線,求TPN的大。
分析:因為兩個圓大小相同,所以 半徑OP=O'P=OO',又TP、NP分別為兩圓的切 線,所以PTOP,PNO'P,即OPT=O'PN=90,所以TPN等于36 0減去OPT+O'PN+OPO'即可.
解 :∵OP=OO'=PO',
△PO'O是一個等邊三角形.
OPO'=60.
又∵TP與NP分別為兩圓的切線,
TPO =NPO'=90.
TPN=360-290-60=120.
四、想一想
如圖(1),⊙O1與⊙O2外切,這個圖是 軸對稱圖形嗎?如果是,它的對稱軸是什么?切點與對稱軸有什么位置關系?如果⊙O1與⊙O2內切呢?〔如圖(2 )〕
[師]我們知道圓是軸對稱圖形,對稱軸是任一直徑所在的直線,兩個圓是否也組成一 個軸對稱圖形呢?這就要看切點T是否在連接兩個圓心的直線上,下面我們用反證法來證明.反證法的步驟有三 步:第一步是假設結論不成立;第二步是根據假設推出和已知條件或定理相矛盾的結論;第三步是證明假設錯誤,則原來的結論成立.
證明:假設切點T不在O1O2上.
因為圓是軸對稱圖形,所以T關于O1O2的對稱點T'也是兩圓的公共點,這與已知條件⊙O1和⊙O2相切矛盾,因此假設不成立.
則T在O1O2上.
由此可知圖(1)是軸對稱圖形,對 稱軸是兩圓的連心線,切點與對稱軸的位置關系是切點在對稱軸上.
在圖(2)中應有同樣的結論.
通過上面的討論,我們可以得出結論:兩圓相內切或外切時,兩圓的連心線一定經過切點,圖(1)和圖(2)都是軸對稱圖形,對稱軸是它們的連心 線.
五、議一議
投影片(24.3C)
設兩圓的半徑分別為R和r.
(1)當兩圓外切時,兩圓圓心之間的距離(簡稱圓心距)d與R和r具有怎樣的關系?反之當d與R和r滿足這一關系時,這兩個圓一定外切嗎?
(2)當兩圓內切時(R>r),圓心距d與R和r具有怎樣的關系?反之,當d與R和r滿足這一關系時,這兩個圓一定內切嗎?
[師]如圖,請大家互相交流.
[生]在圖(1)中,兩圓相外切,切點是A.因為切點A在連心線 O1O2上,所以O1O2=O1A+O2A=R+r,即d=R+r;反之,當d=R+r時,說明圓心距等于兩圓半徑之和,O1、A、O2在一條直線上,所以⊙O1與⊙O2只有一個交點A,即⊙O1與⊙O2外切.
在圖(2)中,⊙O1與⊙O2相內切,切點是 B.因為切點B在連心線O1O2上,所以 O1O2=O1B-O2B,即d=R-r;反之,當d=R-r時,圓心距等于兩半徑之差,即O1O2=O1B-O2B,說明O1、O2、B在一條直線上,B既在⊙O1上,又在⊙O2上,所以⊙O1與⊙O2內切.
[師]由此可知,當兩圓相外切時,有d=R+r,反過來,當d=R+r時,兩圓相外切,即兩圓相外切 d=R+r.
當兩圓相內切時,有d=R-r,反過來,當d=R-r時,兩圓相內 切,即兩圓相內切 d=R-r.
、螅n堂練習
隨堂練習
、簦n時小結
本節課學習了如下內容:
1.探索圓和圓的五種位置關系;
2.討論在兩圓外切或內切情況下,圖形的軸對稱性及對稱軸,以及切點和對稱軸的位置關系;
3. 探討在兩圓外切或內切時,圓心距d與R和r之間的關系.
、酰n后作業 習題24.3
、觯顒优c探究
已知圖中各圓兩兩相切,⊙O的半徑為2R,⊙O1、⊙O2的半徑為R,求⊙O3的半徑.
分析:根據兩圓相外切連心線的長為兩半徑之和,如果設⊙O 3的半徑為r,則O1O3=O2O3=R+r,連接OO3就有OO3O1O2,所以OO2O3構成了直角三角形,利用勾股定理可求得⊙O3的半徑r.
解:連接O2O3、OO3,
O2OO3=90,OO3=2R-r,
O2O3=R+r,OO2=R.
(R+r)2=(2R-r)2+R2.
r= R.
板書設計
24.3 圓和圓的位置關系
一、1.想一想
2.探索圓和圓的位置關系
3.例題講解
4.想一想
5.議一議
二、課堂練習
三、課時小結
四、課后作業
圓和圓的位置關系 教案4
教學目標:
1.使學生理解直線和圓的相交、相切、相離的概念。
2.掌握直線與圓的位置關系的性質與判定并能夠靈活運用來解決實際問題。
3.培養學生把實際問題轉化為數學問題的能力及分類和化歸的能力。
重點難點:
1.重點:直線與圓的三種位置關系的概念。
2.難點:運用直線與圓的位置關系的性質及判定解決相關的問題。
教學過程:
一.復習引入
1.提問:復習點和圓的三種位置關系。
。康模鹤寣W生將點和圓的位置關系與直線和圓的位置關系進行類比,以便更好的掌握直線和圓的位置關系)
2.由日出升起過程當中的三個特殊位置引入直線與圓的位置關系問題。
。康模鹤寣W生感知直線和圓的位置關系,并培養學生把實際問題抽象成數學模型的能力)
二.定義、性質和判定
1.結合關于日出的三幅圖形,通過學生討論,給出直線與圓的三種位置關系的定義。
。1)線和圓有兩個公共點時,叫做直線和圓相交。這時直線叫做圓的割線。
。2)直線和圓有唯一的公點時,叫做直線和圓相切。這時直線叫做圓的切線。唯一的公共點叫做切點。
。3)直線和圓沒有公共點時,叫做直線和圓相離。
2.直線和圓三種位置關系的性質和判定:
如果⊙O半徑為r,圓心O到直線l的距離為d,那么:
。1)線l與⊙O相交 d<r
。2)直線l與⊙O相切d=r
。3)直線l與⊙O相離d>r
三.例題分析:
例(1)在Rt△ABC中,AC=3cm,BC=4cm,以C為圓心,r為半徑。
、佼攔= 時,圓與AB相切。
、诋攔=2cm時,圓與AB有怎樣的位置關系,為什么?
、郛攔=3cm時,圓與AB又是怎樣的位置關系,為什么?
、芩伎迹寒攔滿足什么條件時圓與斜邊AB有一個交點?
四.小結(學生完成)
五、隨堂練習:
(1)直線和圓有種位置關系,是用直線和圓的個數來定義的;這也是判斷直線和圓的位置關系的重要方法。
(2)已知⊙O的直徑為13cm,直線L與圓心O的距離為d。
、佼攄=5cm時,直線L與圓的位置關系是;
、诋攄=13cm時,直線L與圓的位置關系是;
、郛攄=6。5cm時,直線L與圓的位置關系是;
。康模褐本和圓的位置關系的判定的'應用)
(3)⊙O的半徑r=3cm,點O到直線L的距離為d,若直線L 與⊙O至少有一個公共點,則d應滿足的條件是()
(A)d=3 (B)d≤3 (C)d<3 d="">3
2.直線l與圓 O相切<=> d=r
。ㄉ鲜鼋Y論中的符號“<=> ”讀作“等價于”)
式子的左邊反映是兩個圖形(直線和圓)的位置關系的性質,右邊是反映直線和圓的位置關系的判定。
四、教學程序
創設情境------導入新課------新授-------鞏固練習-----學生質疑------學生小結------布置作業
[提問] 通過觀察、演示,你知道直線和圓有幾種位置關系?
[討論] 一輪紅日從海平面升起的照片
[新授] 給出相交、相切、相離的定義。
[類比] 復習點與圓的位置關系,討論它們的數量關系。通過類比,從而得出直線與圓的位置關系的性質定理及判定方法。
[鞏固練習] 例1,
出示例題
例1 在Rt△ABC中,∠C=90°,AC=3cm,BC= 4cm,以C為圓心,r為半徑的圓與AB有什么樣的位置關系?為什么?
。1)r=2cm; (2)r=2.4cm; (3)r=3cm
由學生填寫下例表格。
直線和圓的位置關系
公共點個數
圓心到直線距離d與半徑r關系
公共點名稱
直線名稱
圖形
補充練習的答案由師生一起歸納填寫
教學小結
直線與圓的位置關系,讓學生自己歸納本節課學習的內容,培養學生用數學語言歸納問題的能力。然后老師在多媒體打出圖表。
本節課主要采用了歸納、演繹、類比的思想方法,從現實生活中抽象出數學模型,體現了數學產生于生活的思想,并且將新舊知識進行了類比、轉化,充分發揮了學生的主觀能動性,體現了學生是學習的主體,真正成為學習的主人,轉變了角色。
【圓和圓的位置關系 教案】相關文章:
圓和圓的位置關系08-17
數學教案-圓和圓的位置關系08-17
直線和圓的位置關系08-17
數學教案-直線和圓的位置關系08-17
直線和圓的位置關系教學反思04-14
《直線和圓的位置關系》教學反思07-01
數學教案-直線與圓的位置關系08-17
第六冊直線和圓的位置關系08-17
《直線與圓的位置關系》教學反思03-08